
1

Android Application Development

Module I:
Mobile and Information Architecture
Introduction to Mobile: A brief history of Mobile, The Mobile Eco system, Why Mobile? Types of Mobile
Applications. Mobile Information Architecture: Mobile Design, Mobile 2.0, Mobile Web Development,
Small Computing Device Requirements.
Module-II:
Introduction to Android: History of Mobile Software Development, The Open Handset Alliance, Android
platform differences.
Android Installation: The Android Platform, Android SDK, Eclipse Installation, Android Installation,
Building a Sample Android Application.
Module-III:
Android Application Design Essentials: Anatomy of an Android applications, Android terminologies,
Application Context, Activities, Services, Intents, Receiving and Broadcasting Intents.
Android File Settings: Android Manifest File and its common settings, Using Intent Filter, Permissions,
Managing Application resources in a hierarchy, working with different types of resources.
Module-IV:
Android User Interface Design: Essentials User Interface Screen elements, Designing User Interfaces with
Layouts.
Animation Techniques: Drawing and Working with Animation- Drawing on the screen–Working with Text-
Working with Bitmaps-Working with shapes-Working with animation.
Module-V:
Android APIs-I: Using Common Android APIs Using Android Data and Storage APIs, Managing data using
SQLite, Sharing Data between Applications with Content Providers.
Android APIs-II :Using Android Networking APIs, Using Android Web APIs, Using Android Telephony
APIs, Deploying Android Application to the World.
Text Books:
Lauren Darcey and Shane Conder,“ Android Wireless Application Development”, Pearson Education, 2nd
ed. (2011).
•James Keogh, “J2ME: The Complete Reference”, Tata Mc Graw Hill. 1

A brief History of Mobile

Telephone
Greatest inventions of mankind.
It revolutionized communications
Enabling us to reach across great distances
Share thoughts, ideas, and dreams with our fellow man
Making the world a much smaller place in the process.

The Traditional Telephone

Alexander Graham Bell invented the first phone and was
granted a patent on his new product in March of 1876
launched by the BellSouth phone company

MODULE-I

2

2

A Modern Mobile Phone

The Modern Mobile phone is a distant cousin to the telephone, it is

1. A communication and information device.

2. It is nearly always connected to the Internet

3. Send and receive voice and text messages

4. Purchase goods and services without opening your wallet

5. It can locate which street corner you are standing

6. We use to publish information and knowledge

7. Capable of doing nearly everything you can do with a desktop

computer

The Modern Mobile

3

The Evolution of Devices

Every story has a beginning, and mobile development is no different

Mobile technology has gone through many Different Evolutions.

In the industry, refer to these evolutions as “Generations” or simply “G” which refers to the

maturity and capabilities of the actual cellular networks

The cellular network is only one element of the overall Mobile Ecosystem

1. The Brick Era

2. The Candy Bar Era

3. The Feature Phone Era

4. The Smartphone Era

5. The Touch Era

Segment the history of mobile into five distinct eras of devices

4

3

The first era I call the Brick Era (1973–1988).
A Corded Receiver connected to a portable radio the size and weight of a car Battery.
Brick Era phones required huge batteries to get the power needed to reach the nearest
cellular network site
Brick Era phones proved useful only to those who truly needed Constant Communication,
such as Stockbrokers or those who worked in the field, such as Salespeople or Real Estate
Agents; because they were so enormous and so expensive

Motorola DynaTAC introduced in 1983.
The Motorola DynaTAC 8000X was the first mobile phone to
receive FCC acceptance, in 1983.
DynaTAC was actually an abbreviation of Dynamic Adaptive
Total Area Coverage.
Motorola discontinued the DynaTAC as late as 1994.

1. The Brick Era

5

2. The Candy Bar Era

•The second era, the Candy Bar Era (1988–1998)

•Used Long, Thin, Rectangular form factor of the majority of mobile devices

•The network shifted 2G technology, in Finland in 1991.

•Increased usage and decreased the power demands of the device

•Candy bar phones associated with 2G GSM (Global System for Mobile

communications) networks—included SMS (Short Message Service)

capabilities.

•During the mid-1990s, a mobile device future blossomed in Northern Europe.

•Text message is limited to 140 characters

The First Flip Phone (1996)

The StarTAC, created by Motorola in 1996, was
the phone that started the whole revolution of
flip phones

6

4

3. The Feature Phone Era

The third era, the Feature Phone Era (1998–2008)

These Mobile phones had

make voice calls, send text messages, play the Snake game,

listening to music , taking photos and

introduced the use of the Internet

GSM network providers added GPRS (General Packet Radio Service)

This network is often referred to as 2.5G, or halfway between 2G and 3G

Network providers offering CDMA and other TDMA-based networks

The introduction of the Motorola V3, more commonly known as the RAZR

Selling over 100 million units, to become the second-best-selling mobile phone of all time

PC World magazine ranked it #12 in their “50 Greatest Gadgets of the Past 50 Years”.
Due to Poor Mobile Web Browser, high prices, poor marketing, and inconsistent rendering,
no one was using it.

7

4. The Smartphone Era

The Smartphone Era occurred at third and fifth eras and spans from 2002 to the present

Smart phones have all the capabilities like making a phone call, sending an SMS, taking a

picture, and accessing the mobile web,

Most smart phones are distinctive in that they use a common OS, a larger screen size, a

QWERTY keyboard or stylus for input, and Wi-Fi.

Nokia 9000 series of “Communicator” smart phones

Symbian initially a joint venture of Nokia, Motorola, Ericsson, and Psion.

Later Nokia created the Symbian OS, containing common libraries, tools, and frameworks

The Symbian OS is used for a variety of mobile devices, Nokia S60 , the 6260 and N95

Microsoft attempted Windows CE platform, which would later become Windows Mobile

Palm OS based PDA with a phone module to create PDA-style smart phones.

Research in Motion (RIM) applied its two-way paging that create the first BlackBerry,

which would be used to “push” email.

8

5

5. The Touch Era
“Change occurs because there’s a gap between what is and what should be “-Craig McCaw
“Every once in a while a Revolutionary Product comes along that Changes Everything.”-Steve Jobs
First Touch Screen Phone (1992)
The IBM Simon was the first of its kind when
it came out in 1992.
This phone was the 1992 version of today's
I-Phone.
It was touch screen, portable, had a
calculator, email, and could work on
networks.

IBM Simon
I-Phone 1

Mobile devices of the Touch Era are a completely new medium capable of offering real
people new and exciting ways to interact and understand information.

The devices of tomorrow will be able to leverage location, movement, and the collective
knowledge of mankind, to provide people’s lives with greater meaning

9

The Mobile Ecosystem
The mobile ecosystem or a system of layers where each layer is reliant on the others to create a
seamless, end-to-end experience.
1. Operators

The Base Layer in the mobile ecosystem is the
operator.
Operators can be referred to as

Mobile Network Operators (MNOs)
Mobile Service Providers,
Wireless Carriers or Carriers
Mobile Phone Operators
Cellular Companies

Operators Responsibilities:

The Layers of The Mobile Ecosystem

They Install Cellular Towers,
Operate the Cellular Network,
Make Services Available for Mobile Subscribers,
Maintain Relationships With the Subscribers,
Handling Billing and Support,
Offering Subsidized Device Sales
 Network of Retail Stores.

10

6

World’s Largest Mobile Operators

11

2. Networks

Operators operate wireless networks and cellular technology is just a radio that receives a
signal from an antenna.
The type of radio and antenna determines the capability of the network and the services you
can enable on it.

GSM Mobile Network Evolutions

12

7

3. Devices

Mobile Devices Around the World Breakdown of Devices

13

4. Platforms
A mobile platform’s primary duty is to provide access to the devices.
To run software and services on devices we need Platform or a Core Programming
Language.
Platforms are split into three categories:

1. Licensed
2. Proprietary
3. Open Source

1. Licensed Platforms
Licensed Platforms are sold to device makers for nonexclusive distribution on devices.
They create a common platform of development Application Programming Interfaces (APIs).

Categories of Licensed Platforms:

A. Java Micro Edition (Java ME)
J2ME/ Java ME is the most predominant software platform
It provides a collection of Java APIs for the development of software

B. Binary Runtime Environment for Wireless (BREW)
BREW is a licensed platform created by Qualcomm for mobile devices for the U.S. market.
It is an interface-independent platform that runs a variety of application frameworks, such as
C/C++, Java, and Flash Lite.

14

8

C. Windows Mobile
Windows Mobile is a compact version of the Windows operating system, combined with a
suite of basic applications for mobile devices that is based on the Microsoft Win32 API.
D. LiMo
LiMo is a Linux-based mobile platform created by the LiMo Foundation.
Although Linux is open source, LiMo is a licensed mobile platform used for mobile devices.
LiMo includes SDKs for creating Java, native, or mobile web applications using the WebKit
browser framework.

2. Proprietary Platforms
Proprietary platforms are designed and developed for use on their devices.
They are not available for use by competing device makers.
A. Palm
Palm uses three different proprietary platforms.
Palm OS platform based on the C/C++ for their Palm Pilot line, but is now used in low-end
smart phones such as the Centro line.
Windows Mobile-based platform for higher-end smartphones like the Treo line.
webOS is based on the WebKit browser framework, and is used in the Prē line.
B. BlackBerry
Research in Motion (RIM) maintains their own proprietary Java-based platform, used
exclusively by their BlackBerry devices.
C. iPhone
Apple uses a proprietary version of Mac OS X as a platform for their iPhone and iPod touch
line of devices, which is based on Unix.

15

3. Open Source Platforms
Open source platforms are freely available for users to download, alter, and edit.
Open source mobile platforms are newer and slightly controversial, but they are
increasingly gaining traction with device makers and developers.
Android is one of these platforms.
It is developed by the Open Handset Alliance, which is spearheaded by Google.
The Alliance seeks to develop an open source mobile platform based on the Java

16

9

5. Operating Systems
Operating systems often have core services or toolkits that enable applications to talk
to each other and share data or services.
Although not all phones have operating systems, the following are some of the most common:
Symbian
Symbian OS is a open source operating system designed for mobile devices, with associated
libraries, user interface frameworks, and reference implementations of common tools.
Windows Mobile
It is the mobile operating system that runs on top of the Windows Mobile platform.
Palm OS
Palm OS is the operating system used in Palm’s lower-end Centro line of mobile phones.
Linux
It is used as an operating system to power Smart phones, including Motorola’s RAZR2.
Mac OS X
A specialized version of Mac OS X is the operating system used in Apple’s iPhone and iPod touch.
Android
Android runs its own open source operating system, which can be customized by operators and
device manufacturers.

17

Applications

Application Frameworks are used to create applications, such as a game, a web browser,
a camera, or media player
Frameworks are well standardized, but the devices are not.
The largest challenge of deploying applications is knowing the specific Device Attributes
and Capabilities

For example, if you are creating an application using the Java ME
application framework, you need to know
What Version of Java ME the Device Supports,
The Screen Dimensions,
The Processor Power,
The Graphics Capabilities,
The Number of Buttons it has, and
How the Buttons are Oriented

Mobile Applications Provide Excellent User Experience
Always Comes at a Fantastic Development Cost and Potentially Create a Positive Return
on Investment

18

10

Services

The Last Layer in the Mobile Ecosystem is Services.
Services Include Tasks Such as
Accessing The Internet,
Sending Text Message
Being Able to get a Location etc…

19

Why Mobile?

The majority of mobile strategies start with a well-thought-out plan of how to use the

medium to meet the needs of users or further the goals of the business

The people of Companies, people at Conferences, Online Article Writers, and Mobile

Experts claim that “Mobile is the Next Big Thing”

“Why Mobile?”

Mobile is not only a New Medium also a New Business Model.

Building a Successful Long-term Business around the underserved needs of real people

It simply requires an honest look at What Exists, What Users Want

20

11

1. Size and Scope of the Mobile Market

2. The Addressable Mobile Market

 High-End Versus Low-End Devices

 Best-selling Versus Free

 Mobile Web Versus Native Applications

 Touch Versus D-Pad

1. Mobile As a Medium

 The Printing Press

 Recordings

 Cinema

 Radio

 Television

 The Internet

 Mobile
21

1. Size and Scope of the Mobile Market

The earth’s population is a little over 6 billion.
The USA has a population of 303 million people.
The European Union’s population is 495 million.
India’s is 1.2 billion.
China’s is 1.3 billion,
Roughly 1/5th the population of the World

The Sizes of Various Countries Around the World
Mobile population in UK, USA, EU, India and China

22

12

Over 3.6 billion people own to mobile devices.
Over 1.6 billion (or 25%) have access to the Web through a mobile device.
Interesting and unexpected is that just 1.1 billion people have access to
Internet-Connected Desktop Computers.

Predicted Growth of Mobile Web Access

23

The Addressable Mobile Market

Many companies fall into two broad categories:
They have tried something in mobile and were not impressed with the results

or
They want to try to do something in mobile but are cautious of making the investment
needed

• High-end Versus Low-end Devices
• Best-selling Versus Free Devices
• Mobile Web Versus Native Applications
• Touch Versus D-pad (Directional Pad)

Devices

Break the
market down

to Four
Comparisons:

24

13

Mobile As a Medium

After examining the size and scope of the mobile market, we need to understand what

it means to users and ultimately how it will benefit the business

“Mobile is the Seventh Mass Media”- Tomi Ahonen and expert on next-generation wireless

Tomi Ahonen points out that each of the mass media has advantages and disadvantages,

each playing a significant role in society, with mobile being the latest in the series.

• The Printing
Press

• Recordings
• Cinema
• Radio
• Television
• The Internet
• Mobile

Seven
Mass

Media:

25

1. The Printing Press

The First Mass Medium was the printing press, one of the greatest inventions of mankind.

The time needed to Publish Information was dramatically reduced, and distributed farther

and faster than Handwritten Predecessors.

Not to mention there was Less Damage from time or the elements.

The printing press has continually played a crucial role in history.

Babasaheb Ambedkar Wrote In the First Issue of Mooknayak–”Need of An Independent

Newspaper”

26

14

2. Recordings

The Second Mass Medium was the Recorded Sound, initially on Edison’s Phonograph

Cylinder and later on more durable materials like Glass, Vinyl, Magnetic Tape, and CD.

Recordings enabled people to Share Information Over Time and over Great Distances.

Recorded music also played an important part in Influencing Society.

Jazz gave new opportunities to Freed Slaves in America as Entertainers.

After the End of Slavery, African-American Jazz musicians Became Popular Figures in

modern music

Elgar Recording in 1914 Edison’s Phonograph Cylinder
Three African-American Jazz

Composers: Davis, Ellington, Payton
27

3. Cinema
The Third Mass Medium was the Cinema.
Like recordings, Cinema as entertainment, but Cinema Enabled a Visual Experience to be
shared over time and distance.
Suddenly, we were able to witness distant or past events firsthand, enabling the viewer to
Draw Conclusions from What we Saw and Heard.
Worlds first movie La Sortie de l'usine Lumière à Lyon ("the exit from the Lumière factory
in Lyon“) 46 seconds previewed in 1895.
India’s first feature film “Raja Harishchandra” by Dadasaheb Phalke was released in 1913

https://upload.wikimedia.org/wikipedia/en/transcoded/6/67/L%27Arriv%C3%A9e_d%2
7un_train_en_gare_de_La_Ciotat%2C_Complete.webm/L%27Arriv%C3%A9e_d%27un_t
rain_en_gare_de_La_Ciotat%2C_Complete.webm.360p.webm

28

15

4. Radio
The Fourth Mass Medium was Radio, an extension of recordings, but including the Live
Broadcast of Material.
Information could be distributed as it happened and as far as the Radio Signal Would Reach.
Like Cinema, Radio could give listeners a Powerful Personal Experience.
Because recording technology was becoming smaller, events could be recorded where Film
Cameras Could not go.
Example:
1. Winston Churchill’s radio addresses, which brings Hope and Confidence to the people of

Great Britain during the Frequent Air Raids of World War II.
2. Edward R. Murrow’s radio reports from the battlefield, which brought the war into living

rooms around the world

Marconi's first radio broadcast made 125
years ago

The First Radio Broadcast in India India's first radio station was
inaugurated in Mumbai on July 23,
1927

29

5. Television

Television is the Fifth Mass Medium and a Visual Extension of Radio.

Television transformed into a more Iconic , most influential and most disruptive Medium.

The television became an Alternative to previous media like cinema and Radio.

The influence of television has had on culture, how events

Landing on the Moon

The conflicts in Southeast Asia

The Beatles performing on the Ed Sullivan Show

Elvis Presley’s dance moves and

The weekly adventures of the USS Enterprise transformed culture.

30

16

6. The Internet

Nothing Happen for a long time after the invention of the television.

Until we started plugging our computers into the phone jack to hear

that weird tone means connecting to the Internet and the WWW.

On October 29th, 1969 the First Message on the internet was sent from

UCLA to Stanford University: it was just two letters “lo.”

In late 2008, Web 2.0 showed us that it could be used in meaningful ways

i.e., Users can Work Together, add Information, and run Programs all

from the Web

The Web is threatening the Printing Press and Newspaper empires, Because

The iTunes Music Store is available freely on the Web .

Purchase, Download and Stream movies.

Podcasts and streaming audio are transforming what “radio” means.

All major TV networks are either selling or streaming their content online. 31

7. Mobile
The mobile industry actually started around the same time as the
Web.

Mobile is quite unique, the only mass medium that can do

everything the previous Six Media can do.

The first mobile phone in India was used in 1995 by the India from

the Nokia company by paying a price of 45K

India First Mobile Phone Call - C.M of Bengal, Joytib Basu had

called the C.M of Delhi, Sukhi Ram on 1995/July/30.

At that time there was a charge of Rs 16 for a minute call and the

one who would receive the call had to pay Rs 8 per minute

The following are the unique and competitive benefits
 Read and Publish
 Play Recordings
 Watch Movies
 Listen to Radio
 Watch Television
 Use the Internet 32

17

Mobile’s Unique Benefits
Tomi Ahonen points out, Mobile has Five Unique Benefits that none of the Media does.

The First Truly Personal Mass Media
To interact with information in a Personal and Intimate way (

The first Always-on Mass Media

The capability to send and receive information at all times, even when idle,

Enabling the device to Predict Tasks

The first Always-carried Mass Media

Seven out of ten people sleep with their phone within arm’s reach.

The only mass media with a Built-in Payment Channel

Every phone has a built-in means of purchasing content, goods etc..

At the point of Creative Impulse

 Create content and Distribute it

 Uploading Pictures to Social Networks

 Information and Experiences can be shared with audiences as they happen and

from multiple points of view 33

Types of Mobile Applications

The mobile medium type is the type of Application Framework or Mobile Technology

that presents Content or Information to the user.

It is a technical approach regarding which Type of Medium to use.

This decision is determined by the impact it will have on the User Experience.

The Technical Capabilities and Capacity of the publisher also factor into which

approach to take.

Multiple Mobile Application Medium Types

34

18

1. SMS
2. Mobile Websites
3. Mobile Web Widgets
4. Mobile Web Applications
5. Native Applications
6. Games

Types of Mobile Applications

1. SMS
The most basic mobile application you can create is an SMS application.
Pros

• They Work on Any Mobile Device nearly instantaneously.

• They’re Useful for Sending Timely Alerts to the user.

• They can be Incorporated Into any Web or Mobile Application.

• They can be Simple to Set Up and Manage.
Cons
• They’re Limited to 160 Characters.

• They provide a Limited Text-based Experience.

• They can be Very Expensive.
35

2. Mobile Websites
Mobile websites are characterized by simple “drill-down”
architecture, or the simple presentation of Navigation Links that
take to a Page a Level Deeper.
Mobile websites often have a Simple Design , Informational and
few Interactive Elements
Mobile websites are Easy to Create but they fail to display
across Multiple Mobile Browsers
Mobile websites have made up with the early WML-based sites.
The mobile browsers for iPhone and Android are introduced the
quality of mobile websites began to Improve Dramatically and
Usage Improved.

An Example of a Mobile Website

Pros
• They are easy to Create, Maintain, and Publish.
• They can use the same tools and techniques like desktop sites.
• Nearly all mobile devices can view mobile websites
Cons
• Difficult to support across multiple devices.
• Offer users a Limited Experience.
• Mobile websites are simply desktop content reformatted for
mobile devices.
• They can Load Pages Slowly, due to Network Latency.

36

19

3. Mobile Web Widgets

Mobile web user experience was severely Underutilized and Failed to gain traction
So Several Operators, Device Makers, and Publishers began creating Widget Platforms to
counter the Mobile Web’s Weaknesses

An example mobile web widget

A Web Widget is component of a user interface that
operates in a particular way (OR)
A mobile web widget is a Standalone Chunk of HTML-based
Code that is executed by the end user in a particular way

Example: Opera Widgets, Nokia Web RunTime (WRT), Yahoo!
Blueprint, and Adobe Flash Lite

Pros
• Easy to Create, using basic HTML, CSS, and JavaScript .
• Simple to Deploy across multiple handsets.
• Offer an iMproved user experience and a Richer Design, tapping into device
features and offline use.
Cons
• Require a Compatible Widget Platform to be installed on the device.
• They cannot run in any mobile web browser.
• They require learning additional proprietary, non-web-standard techniques.

37

4. Mobile Web Applications

Mobile Web Applications are Mobile Applications that do not need to be installed or
compiled on the target device.
Developed using XHTML, CSS, and JavaScript
They provide an Application-like Experience to the user
Allow users to Interact With Content in Real Time, where a Click or Touch Performs an action
within the current view

The Facebook
Mobile Web App

Pros
• Easy to Create using basic HTML, CSS, and JavaScript knowledge.
• Simple to Deploy across multiple handsets.
• Offer a better User Experience and a rich design, tapping into device
features and offline use.
• Content is Accessible on any mobile web browser.
Cons
• The Optimal Experience might not be available on all handsets.
• They can be Challenging to Support across multiple devices.
• They Don’t Always Support Native Application Features, like Offline
Mode, Location Lookup, File System Access, Camera, and so on.

38

20

5. Native Applications / Platform Applications

1. Platform Applications which are developed and compiled for each mobile platform
2. The most common of all platforms is Java ME (formerly J2ME).
3. A device written as a Java ME MIDlet should work on the majority of feature phones.
4. Platform Application-Devices to Target, Testing and Certification and Distribute the

application to users
5. Apps are Certified, Sold, and Distributed either through an operator portal or an app

store.
6. Apps tap into the majority of the Device Features, Working Online or Offline, Accessing

the Location and the File System

Pros
• Offer a Best-in-class User Experience, a Rich Design and Offline Use.
• Simple to Develop for a Single Platform.
• Charge for Applications.
Cons
• Cannot be Easily Ported to other mobile platforms.
• Developing, Testing, and Supporting multiple device platforms is costly.
• Require Certification and Distribution from a third party and have no control.
• Require to Share Revenue with the one or more third parties.

39

6. Games

Games are just like Native Applications that use the similar platform SDKs to create
immersive experiences.
Games are different from native applications for two reasons:
1. Cannot be easily duplicated with web technologies
2. Porting them to multiple mobile platforms is a bit easier

An Example Game for the Iphone

Pros
• Provide a simple and easy to create an immersive
experience.
• Ported to Multiple Devices relatively easily.
Cons
• They can be costly to develop as an original game title.
• They cannot easily be ported to the mobile web.

40

21

Table: Mobile Application Media Matrix

41

Mobile Information Architecture (MIA)

Information Architecture (IA), is a Well-engineered Product with Good Visual Design
It can still fail because of poor information architecture.
The Successful Mobile Products always have a Well Thought-out Information
Architecture
The mobile information architecture defines Not Just How Your Information Will be
Structured but also How People Will Interact With it.
A good Mobile Information Architecture is based on the various User Contexts

What Is Information Architecture?
The Structural Design of Shared Information Environments
The combination of Organizations, Labeling, Search, and Navigation Systems within
websites and intranets
The Art and Science of Shaping Information Products and Experiences to support
usability and findability.
An Emerging Discipline and Community of practice focused on bringing Principles
of Design and Architecture to the Digital Landscape

42

22

Information Architecture

The Organization of Data within an informational space i.e, how the user will get to

information or perform tasks within a website or application.

Interaction Design

The Design of How the User can Participate with the information present, either in a

direct or indirect way, meaning how the user will interact with the website of

application to create a more meaningful experience and accomplish her goals.

Information Design

The Visual Layout of Information or how the user will assess meaning and direction

given the information presented to him.

Navigation Design

The words used to describe information spaces; the labels or triggers used to tell

the users what something is and to establish the expectation of what they will find.

Interface Design

The Design of the Visual Paradigms used to create action or understanding.
43

44

23

Comparing the New York Times website in
desktop and mobile browsers

Content-heavy Site that works well on
the desktop, and is designed to present
the Maximum Amount of Information
above the “fold” or where the screen
cuts off the content.
However, in the mobile browser, the
text is far too small to be useful.

45

The many mobile experiences of the New York Times

46

24

Mobile Information Architecture
1. Keeping It Simple

i. Support Your Defined Goals
ii. Clear, Simple Labels

2. Site Maps
i. Limit Opportunities for Mistakes
ii. Confirm the Path by Teasing Content

3. Clickstreams
4. Wireframes
5. Prototyping

i. Paper Prototypes
ii. Context prototype
iii. HTML prototypes

1. Keeping It Simple
i. Support Your Defined Goals
ii. Clear, Simple Labels

Good Trigger Labels describe each Link / Action are crucial in Mobile.
Words like “Products” or “Services” aren’t good trigger labels
Keep all your labels Short and Descriptive, and never try to use the words to evoke action
Example:
If the user is just trying to get music, don’t call it “My Music,” “My MP3s,” or something
made up that only strokes our corporate egos, such as “AudioJams™”—just call it “Music.”

47

2. Site Maps
Site Maps are a classic information architecture deliverable.
They visually represent the relationship of content to other content and provide a map for
how the user will travel through the informational space.

An example mobile site map

48

25

i. Limit Opportunities for Mistakes

Imagine a road with a fork in it. We can go either left or right.
The risk that we will make the wrong choice is only 50% i.e., that we have a
better than good chance that we will get to where we want to go.
But imagine three roads. Now our chances have dropped to 33%.
Four roads drops your chances to 25%, Five roads takes you down to 20%.
Now a 20 percent chance isn’t great, but it isn’t too bad, either.

Now think of your own website.
How many primary navigation areas do you have? Seven? Eight? Ten? Fifteen?
What risk is there to the users for making a wrong choice?

In the Mobile Context, tasks are Short and users have Limited Time to perform them.
And with Mobile Websites, users can’t access to a Reliable Broadband Connection that
allows them to quickly go back to the previous page.
The users more often than not have to pay for each page view in data charges.

49

A bad mobile information architecture that was designed
with desktop users in mind rather than mobile users

50

26

ii. Confirm the Path by Teasing Content
Information-heavy Sites and applications often employ nested or Drill-down
Architectures, forcing the user to select category after category to get to their target.

Teasing content to confirm the user’s
expectations of the content within 51

3. Clickstreams
The path the visitor takes through a website is called the clickstream.
The Clickstream Data is the information collected about a user while they browse
through a website or use a web browser.
Clickstream Analytics is the process of Tracking, Analyzing and Reporting Data on
the pages a user visits and user behavior while on a webpage.
Search Engines use clickstream data sets to show where a user has searched for a
term, when they have clicked on it and if they go back to searching after this.
Internet Service Providers, Advertising Networks, And IT And Telecom
Organizations also collect clickstream data.

An Example Clickstream for an iPhone Web Application 52

27

Wireframes:
Wireframe is a 2-D Sketch that serves as a Visual Guide and illustrates how an application
will work.
The purpose is provide a visual for site map, serve to separate layout from visual design
and defining how the user will interact with the experience

An example of an iPhone web
application wireframe

Using annotations to indicate the desired
interactions of the site or application 53

Prototyping

a prototype is an interactive but not functional draft of the future application.
It shows the UI design, the user flow, and the planned functionality of the potential
mobile app It contains Key User Interfaces, Screens, and Simulated Functions without any
working code or final design elements.

Types of Mobile Prototyping

1. Paper Prototypes
2. Context Prototype
3. HTML Prototypes 1.Paper Prototypes

Taking printed-out wireframes or even drawings of our interface

A paper prototype A touch interface paper prototype 54

28

2. Context Prototype
Take a higher-end device that enables you to load full-screen images on it.
Take wireframes or sketches and load them onto the device, sized to fill the device screen

Context Prototype, or taking images loaded onto
a device and testing them in the mobile context

55

3. HTML Prototypes

An XHTML prototype

 This is a prototype that actually load onto a device and
produce the nearest experience to the final product, but
with static dummy content and data.

 A lightweight, semi functional static prototype is created
using XHTML, CSS, and JavaScript.

 With a static XHTML prototype we use all the device
metaphors of navigation and see how much content will
really be displayed on screen.

Benefits of Prototyping:
Improves UX
Helps With Focus and Collaboration
Saves Time and Effort

56

29

Create a great experience design with : Context, Information Architecture, and
Visual Design
The visual design is the direct representation of everything under and the first
impression the user will have.
A Great Design gives the user High Expectations of your site or application where
as a Poor Design leads to Lower Expectations.

Mobile Design

Lowest Common Denominator

 To reach the widest possible number of platforms, create a
product that works on the most common architectural
components on all platforms (Figure).

 Computers- Dozen of different platforms
 Mobile Development- Hundreds of different devices
 Typically, mobile design starts with the Lowest Common

Denominator

A Lowest
Common

Denominator
Design

57

1. Interpreting Design1. Interpreting Design

 Creating A VISION for how to communicate information or ideas and then

duplicating that on the printed page.

 Every EXPERIENCE Is unique, which is depends on the user’s screen size, web

browser, text settings, the processor speed and connection to the Internet.

 There are too many variables to try to “CONTROL” the design completely.

 In mobile design, interpret about good design and translate it to the new medium

that is both technologically precise and incredibly demanding

 Provide the design with the flexibility to present information on a number of

different devices.

58

30

2. The Mobile Design Tent-Pole

 In Hollywood, executives like to use the term “Tent-pole” to describe their

movies and television shows.

 Tent-Pole means BUSINESS, and CREATIVE

 In mobile design, the de facto strategy is to create Tent-pole Products

 The products that support the Largest Number of Devices that no one will ever use.

 They are creatively old, lack of inspiration, and simply exist with no meaningful

purpose to the user.

 To have a successful mobile design, Made Emotional Connection that Serves Many

Audiences, Many Cultures, and Many Places and Design Experiences.

 Too often designers simply repeat the visual trends copying the inspiration of others

59

the best-selling games and applications for
the iPhone are the ones with the best

designs

Users are able to determine the quality
of the app, largely influenced by the

design, before they make a purchase

60

31

3. Designing for the Best Possible Experience

 When the first iPhone came out, it provides the best possible experience and

that is where consumers will go.

 Since starting, the iPhone destroy every record in mobile devices, becoming

 One of the best-selling phones ever

 One of the most used mobile browsers in the world

 2/3 of mobile browsing in the U.S. comes from an iPhone or an iPod touch.

 More than a billion mobile applications have been sold for these devices in

a year.

61

The Elements
of Mobile

Design

• Context
• Message
• Look and Feel
• Layout
• Color
• Typography
• Graphics

62

32

A good design requires Three Abilities:
 Natural Gift to see visually how something should look that produces a Desired Emotion

with the target audience.
 Ability to manifest that Vision into something for others to see, use, or participate in.
 Knowledge how to Utilize the medium to achieve your design goals.

1. Context
Context is core to the mobile experience.
As the designer, user can figure out how to address context using your app.
Who are the users?
What is happening?
When will they interact?
Are they at home and have large amounts of time?
Are they at work where they have short periods of
time?
Will they have idle periods of time while waiting for a
train, for example?
Where are the users?
Are they in a public space or a private space?
Are they inside or outside?
Is it day or is it night?
Why will they use your app?
What value will they gain from your content or services
in their present situation?

How are they using their mobile
device?
Is it held in their hand or in their
pocket?
How are they holding it?
Open or closed?
Portrait or Landscape?

63

2. Message

Message is the Overall Mental Impression designer create explicitly through visual design
The approach to the design will define that message and create expectations.
Sparse and simple design with lots of whitespace - the user to expect a focus on content
Heavy design with dark colors and lots of graphics will tell the user to expect something
more immersive.

Yahoo! ESPN Disney Wikipedia Amazon

Yahoo!: Hard, Clean, and Sharp
ESPN: Bold, Disorderly, and Content-heavy
Disney: Bold, Busy, and Disorienting.
Wikipedia: Clean, Minimal, and Text-heavy
Amazon: Minimal But Messy, Product-heavy, and Disorienting

64

33

3. Look and Feel
Look and feel is used to describe appearance
Something they can touch or interact with
How the user will use an interface
How you will address their context

Mobile design pattern at the design4mo
Bile pattern library.

65

4. Layout
It is how the user will Visually Process the page
90 % of layout decisions are taken during the information architecture period
The layout design specifies how to visually represent content.
In mobile design, the primary content element is navigation.
 Designing a site or app
Methods of performing tasks
Navigating to other pages
Reading and interacting with content

A Low-fidelity Wireframe
layout design

Medium Fidelity Wireframe
layout design

High Fidelity
Wireframe
layout design

66

34

1. Touch Navigation
With touch navigation can be anywhere on the screen.
Primary Actions or Navigation Areas living at the
bottom of the screen
Secondary Actions living at the top of the screen,
Content Area serving with the area in between

The layout dimensions of Safari on the iPhone

Different Layouts for Different Devices
There are two distinct types of navigation layouts for mobile devices:

Touch
Scroll

67

Fixed versus fluid Layout
Design will scale as the device orientation changes i.e., device is rotated from portrait
mode to landscape and vice versa.
Fixed -A set number of pixels wide
Fluid -having the ability to scale to the full width of the screen regardless of the device
orientation.

2. Scroll Navigation

D-pad is used to go left, right, up, or down.
In this, the primary and the secondary
actions should live at the top of the screen.
Scroll navigation

68

35

5. Graphics

Graphics, or the images that are used to establish or aid a visual experience.
Graphics can be used to supplement the look and feel

Ribot’s Little Spender application for
the iPhone and the S60 platform

Iconography
To communicate ideas and actions to users in
a constrained visual space.

Glyphish provides free iPhone icons69

Using graphics in multiple device orientations

Photos and Images
Photos and images are used to add meaning to content, often by showing a visual display of
a concept, or to add meaning to a design.

70

36

Designing for the Right Device

Comparing the various screen sizes

Designing for Different Screen Sizes

flow of information on mobile devices

71

Mobile Design Tools

Mobile Framework Design Tool Interface Toolkits

Java ME Photoshop, NetBeans JavaFX, Capuchin

BREW Photoshop, Flash BREW UI Toolkit, uiOne, Flash

Flash Lite Flash Flash Lite

iPhone Photoshop, Interface Builder iPhone SDK

Android Photoshop, XML-based themes Android SDK

Palm webOS Photoshop, HTML, CSS, and JavaScript Mojo SDK

Mobile web Photoshop, HTML, CSS, and JavaScript W3C Mobile Web Best
Practices

Mobile widgets Photoshop, HTML, CSS, and JavaScript Opera Widget SDK, Nokia
Web Runtime

Mobile web apps Photoshop, HTML, CSS, and JavaScript iUI, jQTouch, W3C Mobile
Web App Best Practices

72

37

Small Computing Device Requirements

Hardware Requirements
• Display 96 X 54 pixels should support the bitmapped pixels.
• Keypad, keyboard, or touch screen for input
• ROM - 128KB to run the mobile information device (MID)
• 8KB for permanent storage like application data.
• Ram - 32kb to run JVM
• Device must provide the two-way network connectivity (SIM)

Software Requirements
• Native Operating System (Supported System)
• It must include the Exception Handling, Scheduling, Process Interrupts, ability

to run the JVM.
• The file system is not required to run the JVM.
• Able to read and write permanent data onto the nonvolatile memory.

73

Module-II
Introduction to Android:
History of Mobile Software Development, The Open Handset Alliance, Android platform
differences.
Android Installation:
The Android Platform, Android SDK, Eclipse Installation, Android Installation, Building a
Sample Android Application.

Introduction to Android

A Brief History of Mobile Software Development
To understand what makes Android so compelling, we must examine how mobile
development has evolved and how Android differs from competing platforms.
Way Back When
Remember way back when a phone was just a phone? When we relied on fixed landlines?
When we ran for the phone instead of pulling it out of our pocket? When we lost our friends
at a crowded ballgame and waited around for hours hoping to reunite? When we forgot the
grocery list (Figure 1.1) and had to find a payphone or drive back home again?

Figure 1.1 Mobile phones have become a crucial shopping accessory.

Those days are long gone. Today, commonplace problems like these are easily solved with a
one-button speed dial or a simple text message like “WRU?” or “20?” or “Milk and?”
Our mobile phones keep us safe and connected. Nowadays, we roam around freely, relying
on our phones not only to keep in touch with friends, family, and coworkers, but also to tell
us where to go, what to do, and how to do it. Even the most domestic of events seem to
revolve around my mobile phone.
Consider the following true, but slightly enhanced for effect, story:
 Once upon a time, on a warm summer evening, I was happily minding my own business

cooking dinner in my new house in rural New Hampshire when a bat swooped over my
head, scaring me to death.

 The first thing I did—while ducking—was pull out my cell and send a text message to my
husband, who was across the country at the time: “There’s a bat in the house!”

 My husband did not immediately respond (a divorce-worthy incident, I thought at the
time), so I called my Dad and asked him for suggestions on how to get rid of the bat.

 He just laughed.
 Annoyed, I snapped a picture of the bat with my phone and sent it to my husband and my

blog, simultaneously guilt-tripping him and informing the world of my treacherous
domestic wildlife encounter.

 Finally, I Googled “get rid of a bat” and followed the helpful do-it-yourself instructions
provided on the Web for people in my situation. I also learned that late August is when
baby bats often leave the roost for the first time and learn to fly. Newly aware that I had
a baby bat on my hands, I calmly got a broom and managed to herd the bat out of the
house.

 Problem solved—and I did it all with the help of my trusty cell phone, the old LG
VX9800.

My point here? Mobile phones can solve just about anything—and we rely on them
for everything these days.
You notice that I used half a dozen different mobile applications over the course of this story.
Each application was developed by a different company and had a different user interface.
Some were well designed; others not so much. I paid for some of the applications, and others
came on my phone.
As a user, I found the experience functional, but not terribly inspiring. As a mobile developer,
I wished for an opportunity to create a more seamless and powerful application that could
handle all I’d done and more. I wanted to build a better bat trap, if you will.
Before Android, mobile developers faced many roadblocks when it came to writing
applications. Building the better application, the unique application, the competing
application, the hybrid application, and incorporating many common tasks such as messaging
and calling in a familiar way were often unrealistic goals.
To understand why, let’s take a brief look at the history of mobile software development.
“The Brick”
The Motorola DynaTAC 8000X was the first commercially available cell phone. First
marketed in 1983, it was 13 x 1.75 x 3.5 inches in dimension, weighed about 2.5 pounds, and
allowed you to talk for a little more than half an hour. It retailed for $3,995, plus hefty
monthly service fees and per-minute charges.
We called it “The Brick,” and the nickname stuck for many of those early mobile phones we
alternatively loved and hated. About the size of a brick, with a battery power just long enough
for half a conversation, these early mobile handsets were mostly seen in the hands of
traveling business execs, security personnel, and the wealthy. First-generation mobile phones
were just too expensive. The service charges alone would bankrupt the average person,
especially when roaming.
Early mobile phones were not particularly full featured. (Although, even the Motorola
DynaTAC, shown in Figure 1.2, had many of the buttons we’ve come to know well, such as
the SEND, END, and CLR buttons.) These early phones did little more than make and
receive calls and, if you were lucky, there was a simple contacts application that wasn’t
impossible to use.

Figure 1.2 The first commercially available mobile phone: the Motorala DynaTAC.

These first-generation mobile phones were designed and developed by the handset
manufacturers. Competition was fierce and trade secrets were closely guarded. Manufacturers
didn’t want to expose the internal workings of their handsets, so they usually developed the
phone software in-house. As a developer, if you weren’t part of this inner circle, you had no
opportunity to write applications for the phones.
It was during this period that we saw the first “time-waster” games begin to appear. Nokia
was famous for putting the 1970s video game Snake on some of its earliest monochrome
phones. Other manufacturers followed, adding games like Pong, Tetris, and Tic-Tac-Toe.
These early phones were flawed, but they did something important—they changed the way
people thought about communication. As mobile phone prices dropped, batteries improved,

and reception areas grew, more and more people began carrying these handy devices. Soon
mobile phones were more than just a novelty.
Customers began pushing for more features and more games. But, there was a problem. The
handset manufacturers didn’t have the motivation or the resources to build every application
users wanted. They needed some way to provide a portal for entertainment and information
services without allowing direct access to the handset.
And what better way to provide these services than the Internet?
Wireless Application Protocol (WAP)
It turned out allowing direct phone access to the Internet didn’t scale well for mobile.
By this time, professional Web sites were full color and chock full of text, images, and other
sorts of media. These sites relied on JavaScript, Flash, and other technologies to enhance the
user experience and were often designed with a target resolution of 800×600 pixels and
higher.
When the first clamshell phone, the Motorola StarTAC, was released in 1996, it merely had a
LCD 10-digit segmented display. (Later models would add a dot-matrix type display.)
Meanwhile, Nokia released one of the first slider phones, the 8110—fondly referred to as
“The Matrix Phone,” as the phone was heavily used in films. The 8110 could display four
lines of text with 13 characters per line. Figure 1.3 shows some of the common phone form
factors.

Figure 1.3 Various mobile phone form factors: the candy bar, the slider, and the clamshell.

With their postage stamp-sized low-resolution screens and limited storage and processing
power, these phones couldn’t handle the data-intensive operations required by traditional
Web browsers. The bandwidth requirements for data transmission were also costly to the
user.
The Wireless Application Protocol (WAP) standard emerged to address these concerns.
Simply put, WAP was a stripped-down version of HTTP, which is the backbone protocol of
the Internet. Unlike traditional Web browsers, WAP browsers were designed to run within
the memory and bandwidth constraints of the phone. Third-party WAP sites served up pages
written in a markup language called Wireless Markup Language (WML). These pages were
then displayed on the phone’s WAP browser. Users navigated as they would on the Web, but
the pages were much simpler in design.
The WAP solution was great for handset manufacturers. The pressure was off—they could
write one WAP browser to ship with the handset and rely on developers to come up with the
content users wanted.
The WAP solution was great for mobile operators. They could provide a custom WAP portal,
directing their subscribers to the content they wanted to provide, and rake in the data charges
associated with browsing, which were often high.
Developers and content providers didn’t deliver. For the first time, developers had a chance
to develop content for phone users, and some did so, with limited success.
Most of the early WAP sites were extensions of popular branded Web sites, such
as CNN.com and ESPN.com, looking for new ways to extend their readership. Suddenly
phone users accessed the news, stock market quotes, and sports scores on their phones.
Commercializing WAP applications was difficult, and there was no built-in billing
mechanism. Some of the most popular commercial WAP applications that emerged during
this time were simple wallpaper and ringtone catalogues, allowing users to personalize their
phones for the first time. For example, the users browsed a WAP site and requested a specific
item. They filled out a simple order form with their phone number and their handset model. It

was up to the content provider to deliver an image or audio file compatible with the given
phone. Payment and verification were handled through various premium-priced delivery
mechanisms such as Short Message Service (SMS), Enhanced Messaging Service (EMS),
Multimedia Messaging Service (MMS), and WAP Push.
WAP browsers, especially in the early days, were slow and frustrating. Typing long URLs
with the numeric keypad was onerous. WAP pages were often difficult to navigate. Most
WAP sites were written once for all phones and did not account for individual phone
specifications. It didn’t matter if the end-user’s phone had a big color screen or a postage
stamp-sized monochrome one; the developer couldn’t tailor the user’s experience. The result
was a mediocre and not very compelling experience for everyone involved.
Content providers often didn’t bother with a WAP site and instead just advertised SMS short
codes on TV and in magazines. In this case, the user sent a premium SMS message with a
request for a specific wallpaper or ringtone, and the content provider sent it back. Mobile
operators generally liked these delivery mechanisms because they received a large portion of
each messaging fee.
WAP fell short of commercial expectations. In some markets, such as Japan, it flourished,
whereas in others, like the United States, it failed to take off. Handset screens were too small
for surfing. Reading a sentence fragment at a time, and then waiting seconds for the next
segment to download, ruined the user experience, especially because every second of
downloading was often charged to the user. Critics began to call WAP “Wait and Pay.”
Finally, the mobile operators who provided the WAP portal (the default home page loaded
when you started your WAP browser) often restricted which WAP sites were accessible. The
portal allowed the operator to restrict the number of sites users could browse and to funnel
subscribers to the operator’s preferred content providers and exclude competing sites. This
kind of walled garden approach further discouraged third-party developers, who already
faced difficulties in monetizing applications, from writing applications.
Proprietary Mobile Platforms
It came as no surprise when users wanted more—they will always want more.
Writing robust applications such as graphic-intensive video games with WAP was nearly
impossible. The 18-year-old to 25-year-old sweet-spot demographic—the kids with the
disposable income most likely to personalize their phones with wallpapers and ringtones—
looked at their portable gaming systems and asked for a device that was both a phone and a
gaming device or a phone and a music player. They argued that if devices such as Nintendo’s
Game Boy could provide hours of entertainment with only five buttons, why not just add
phone capabilities? Others looked to their digital cameras, Palms, Blackberries, iPods, and
even their laptops and asked the same question. The market seemed to be teetering on the
edge of device convergence.
Memory was getting cheaper; batteries were getting better; and PDAs and other embedded
devices were beginning to run compact versions of common operating systems such as Linux
and Windows. The traditional desktop application developer was suddenly a player in the
embedded device market, especially with Smartphone technologies such as Windows Mobile,
which they found familiar.
Handset manufacturers realized that if they wanted to continue to sell traditional handsets,
they needed to change their protectionist policies pertaining to handset design and expose
their internal frameworks, at least, to some extent.
A variety of different proprietary platforms emerged—and developers are still actively
creating applications for them. Some Smartphone devices ran Palm OS (now Garnet OS) and
RIM Blackberry OS. Sun Microsystems took its popular Java platform and J2ME emerged
(now known as Java Micro Edition [Java ME]). Chipset maker Qualcomm developed and
licensed its Binary Runtime Environment for Wireless (BREW). Other platforms, such as

Symbian OS, were developed by handset manufacturers such as Nokia, Sony Ericsson,
Motorola, and Samsung. The Apple iPhone OS (OS X iPhone) joined the ranks in
2008. Figure 1.4 shows several different phones, all of which have different development
platforms.

Figure 1.4 Phones from various mobile device platforms.

Many of these platforms have associated developer programs. These programs keep the
developer communities small, vetted, and under contractual agreements on what they can and
cannot do. These programs are often required and developers must pay for them.
Each platform has benefits and drawbacks. Of course, developers love to debate over which
platform is “the best.” (Hint: It’s usually the platform we’re currently developing for.)
The truth is no one platform has emerged victorious. Some platforms are best suited for
commercializing games and making millions—if your company has brand backing. Other
platforms are more open and suitable for the hobbyist or vertical market applications. No
mobile platform is best suited for all possible applications. As a result, the mobile phone has
become increasingly fragmented, with all platforms sharing part of the pie.
For manufacturers and mobile operators, handset product lines became complicated fast.
Platform market penetration varies greatly by region and user demographic. Instead of
choosing just one platform, manufacturers and operators have been forced to sell phones for
all the different platforms to compete. We’ve even seen some handsets supporting multiple
platforms. (For instance, Symbian phones often also support J2ME.)
The mobile developer community has become as fragmented as the market. It’s nearly
impossible to keep track of all the changes in the market. Developer specialty niches have
formed. The platform development requirements vary greatly. Mobile software developers
work with distinctly different programming environments, different tools, and different
programming languages. Porting among the platforms is often costly and not straightforward.
Keeping track of handset configurations and testing requirements, signing and certification
programs, carrier relationships, and application marketplaces have become complex spin-off
businesses of their own.
It’s a nightmare for the ACME Company wanting a mobile application. Should they develop
a J2ME application? BREW? iPhone? Windows Mobile? Everyone has a different kind of
phone. ACME is forced to choose one or, worse, all of the above. Some platforms allow for
free applications, whereas others do not. Vertical market application opportunities are limited
and expensive.
As a result, many wonderful applications have not reached their desired users, and many
other great ideas have not been developed at all
The Open Handset Alliance
Enter search advertising giant Google. Now a household name, Google has shown an interest
in spreading its brand and suite of tools to the wireless marketplace. The company’s business
model has been amazingly successful on the Internet, and technically speaking, wireless isn’t
that different.
Google Goes Wireless
The company’s initial forays into mobile were beset with all the problems you would expect.
The freedoms Internet users enjoyed were not shared by mobile phone subscribers. Internet
users can choose from the wide variety of computer brands, operating systems, Internet
service providers, and Web browser applications.
Nearly all Google services are free and ad driven. Many applications in the Google Labs suite
would directly compete with the applications available on mobile phones. The applications

range from simple calendars and calculators to navigation with Google Maps and the latest
tailored news from News Alerts—not to mention corporate acquisitions like Blogger and
YouTube.
When this approach didn’t yield the intended results, Google decided to a different
approach—to revamp the entire system upon which wireless application development was
based, hoping to provide a more open environment for users and developers: the Internet
model. The Internet model allowes users to choose between freeware, shareware, and paid
software. This enables free market competition among services.
Forming of the Open Handset Alliance
With its user-centric, democratic design philosophies, Google has led a movement to turn the
existing closely guarded wireless market into one where phone users can move between
carriers easily and have unfettered access to applications and services. With its vast
resources, Google has taken a broad approach, examining the wireless infrastructure from the
FCC wireless spectrum policies to the handset manufacturers’ requirements, application
developer needs, and mobile operator desires.
Next, Google joined with other like-minded members in the wireless community and posed
the following question: What would it take to build a better mobile phone?
The Open Handset Alliance (OHA) (Figure 1.5) was formed in November 2007 to answer
that very question. The OHA is a business alliance comprised of many of the largest and most
successful mobile companies on the planet. Its members include chip makers, handset
manufacturers, software developers, and service providers. The entire mobile supply chain is
well represented.

Figure 1.5 The Open Handset Alliance.
Working together, OHA members began developing a nonproprietary open standard platform
that would aim to alleviate the aforementioned problems hindering the mobile community.
They called it the Android project.
Google’s involvement in the Android project has been extensive. The company hosts the
open source project and provides online documentation, tools, forums, and the Software
Development Kit (SDK). Google has also hosted a number of events at conferences and the
Android Developer Challenge, a contest to encourage developers to write killer Android
applications—for $10 million dollars in prizes.
Manufacturers: Designing the Android Handsets
More than half the members of the OHA are handset manufacturers, such as Samsung,
Motorola, HTC, and LG, and semiconductor companies, such as Intel, Texas Instruments,
NVIDIA, and Qualcomm. These companies are helping design the first generation of
Android handsets.
The first shipping Android handset—the T-Mobile G1—was developed by handset
manufacturer HTC with service provided by T-Mobile. It was released in October 2008.
Many other Android handsets are slated for 2009 and early 2010.
Content Providers: Developing Android Applications
When users have Android handsets, they need those killer apps, right?
Google has led the pack, developing Android applications, many of which, like the email
client and Web browser, are core features of the platform. OHA members, such as eBay, are
also working on Android application integration with their online auctions.
The first Android Developer Challenge received 1,788 submissions—all newly developed
Android games, productivity helpers, and a slew of Location-Based Services (LBS). We also
saw humanitarian, social networking, and mash-up apps. Many of these applications have
debuted with users through the Android Market—Google’s software distribution mechanism
for Android.

Mobile Operators: Delivering the Android Experience
After you have the phones, you have to get them out to the users. Mobile operators from
Asia, North America, Europe, and Latin America have joined the OHA, ensuring a market for
the Android movement. With almost half a billion subscribers, telephony giant China Mobile
is a founding member of the alliance. Other operators have signed on as well.
Taking Advantage of All Android Has to Offer
Android’s open platform has been embraced by much of the mobile development
community—extending far beyond the members of the OHA.
As Android phones and applications become more readily available, many in the tech
community anticipate other mobile operators and handset manufacturers will jump on the
chance to sell Android phones to their subscribers, especially given the cost benefits
compared to proprietary platforms. Already, North American operators, such as Verizon
Wireless and AT&T, have shown an interest in Android, and T-Mobile already provides
handsets.
If the open standard of the Android platform results in reduced operator costs in licensing and
royalties, we could see a migration to open handsets from proprietary platforms such as
BREW, Windows Mobile, and even the Apple iPhone. Android is well suited to fill this
demand
Android Platform Differences
Android is hailed as “the first complete, open, and free mobile platform.”

 Complete: The designers took a comprehensive approach when they developed the
Android platform. They began with a secure operating system and built a robust
software framework on top that allows for rich application development opportunities.

 Open: The Android platform is provided through open source licensing. Developers
have unprecedented access to the handset features when developing applications.

 Free: Android applications are free to develop. There are no licensing or royalty fees to
develop on the platform. No required membership fees. No required testing fees. No
required signing or certification fees. Android applications can be distributed and
commercialized in a variety of ways.

Android: A Next Generation Platform
Although Android has many innovative features not available in existing mobile platforms,
its designers also leveraged many tried-and-true approaches proven to work in the wireless
world. It’s true that many of these features appear in existing proprietary platforms, but
Android combines them in a free and open fashion, while simultaneously addressing many of
the flaws on these competing platforms.
The Android mascot is a little green robot, shown in Figure 1.6. You’ll see this little guy
(girl?) often used to depict Android-related materials.

Figure 1.6 The Android mascot.

Android is the first in a new generation of mobile platforms, giving its platform developers a
distinct edge on the competition. Android’s designers examined the benefits and drawbacks
of existing platforms and then incorporate their most successful features. At the same time,
Android’s designers avoided the mistakes others suffered in the past.
Free and Open Source
Android is an open source platform. Neither developers nor handset manufacturers pay
royalties or license fees to develop for the platform.

The underlying operating system of Android is licensed under GNU General Public License
Version 2 (GPLv2), a strong “copyleft” license where any third-party improvements must
continue to fall under the open source licensing agreement terms. The Android framework is
distributed under the Apache Software License (ASL/Apache2), which allows for the
distribution of both open and closed source derivations of the source code. Commercial
developers (handset manufacturers especially) can choose to enhance the platform without
having to provide their improvements to the open source community. Instead, developers can
profit from enhancements such as handset-specific improvements and redistribute their work
under whatever licensing they want.
Android application developers have the ability to distribute their applications under
whatever licensing scheme they prefer. Developers can write open source freeware or
traditional licensed applications for profit and everything in between.
Familiar and Inexpensive Development Tools
Unlike some proprietary platforms that require developer registration fees, vetting, and
expensive compilers, there are no upfront costs to developing Android applications.
Freely Available Software Development Kit
The Android SDK and tools are freely available. Developers can download the Android SDK
from the Android Web site after agreeing to the terms of the Android Software Development
Kit License Agreement.
Familiar Language, Familiar Development Environments
Developers have several choices when it comes to integrated development environments
(IDEs). Many developers choose the popular and freely available Eclipse IDE to design and
develop Android applications. Eclipse is the most popular IDE for Android development and
there is an Android plug-in available for facilitating Android development. Android
applications can be developed on the following operating systems:

 Windows XP or Vista
 Mac OS X 10.4.8 or later (x86 only)
 Linux (tested on Linux Ubuntu 6.06 LTS, Dapper Drake)

Reasonable Learning Curve for Developers
Android applications are written in a well-respected programming language: Java.
The Android application framework includes traditional programming constructs, such as
threads and processes and specially designed data structures to encapsulate objects commonly
used in mobile applications. Developers can rely on familiar class libraries, such
as java.net and java.text. Specialty libraries for tasks like graphics and database management
are implemented using well-defined open standards like OpenGL Embedded Systems
(OpenGL ES) or SQLite.
Enabling Development of Powerful Applications
In the past, handset manufacturers often established special relationships with trusted third-
party software developers (OEM/ODM relationships). This elite group of software
developers wrote native applications, such as messaging and Web browsers, which shipped
on the handset as part of the phone’s core feature set. To design these applications, the
manufacturer would grant the developer privileged inside access and knowledge of a
handset’s internal software framework and firmware.
On the Android platform, there is no distinction between native and third-party applications,
enabling healthy competition among application developers. All Android applications use the
same libraries. Android applications have unprecedented access to the underlying hardware,
allowing developers to write much more powerful applications. Applications can be extended
or replaced altogether. For example, Android developers are now free to design email clients
tailored to specific email servers such as Microsoft Exchange or Lotus Notes.

Rich, Secure Application Integration
If you recall the bat story I previously shared, you’ll note that I accessed a wide variety of
phone applications in the course of a few moments: text messaging, phone dialer, camera,
email, picture messaging, and the browser. Each was a separate application running on the
phone—some built-in and some purchased. Each had its own unique user interface. None
were truly integrated.
Not so with Android. One of the Android platform’s most compelling and innovative features
is well-designed application integration. Android provides all the tools necessary to build a
better “bat trap,” if you will, by allowing developers to write applications that leverage core
functionality such as Web browsing, mapping, contact management, and messaging
seamlessly. Applications can also become content providers and share their data among each
other in a secure fashion.
Platforms like Symbian have suffered from setbacks due to malware. Android’s vigorous
application security model helps protect the user and the system from malicious software.
No Costly Obstacles to Publication
Android applications have none of the costly and time-intensive testing and certification
programs required by other platforms such as BREW and Symbian.
A “Free Market” for Applications
Android developers are free to choose any kind of revenue model they want. They can
develop freeware, shareware, or trial-ware applications, ad-driven, and paid applications.
Android was designed to fundamentally change the rules about what kind of wireless
applications could be developed. In the past, developers faced many restrictions that had little
to do with the application functionality or features:

 Store limitations on the number of competing applications of a given type
 Store limitations on pricing, revenue models, and royalties
 Operator unwillingness to provide applications for smaller demographics

With Android, developers can write and successfully publish any kind of application they
want. Developers can tailor applications to small demographics, instead of just large-scale
money-making ones often insisted upon by mobile operators. Vertical market applications
can be deployed to specific, targeted users.
Because developers have a variety of application distribution mechanisms to choose from,
they can pick the methods that work for them instead of being forced to play by others’ rules.
Android developers can distribute their applications to users in a variety of ways.
 Google developed the Android Market (Figure 1.7), a generic Android application store

with a revenue-sharing model.

Figure 1.7 The Android market.

 Handango.com added Android applications to its existing catalogue using their billing
models and revenue sharing model.

 Developers can come up with their own delivery and payment mechanisms.
Mobile operators are still free to develop their own application stores and enforce their own
rules, but it will no longer be the only opportunity developers have to distribute their
applications.
Android might be the next generation in mobile platforms, but the technology is still in its
early stages. Early Android developers have had to deal with the typical roadblocks
associated with a new platform: frequently revised SDKs, lack of good documentation, and

market uncertainties. There are only a handful of Android handsets available to consumers at
this time.
On the other hand, developers diving into Android development now benefit from the first-to-
market competitive advantages we’ve seen on other platforms such as BREW and Symbian.
Early developers who give feedback are more likely to have an impact on the long-term
design of the Android platform and what features will come in the next version of the SDK.
Finally, the Android forum community is lively and friendly. Incentive programs, such as the
Android Developer Challenge, have encouraged many new developers to dig into the
platform.
A New and Growing Platform
What’s New in Android 1.5
The much-anticipated Android 1.5 SDK, released in late April 2009, provided a number of
substantial improvements to both the underlying software libraries and the Android
development tools and build environment. Also, the Android system received some much-
needed UI “polish,” both in terms of visual appeal and performance.
Although most of these upgrades and improvements were welcome and necessary, the new
SDK version did cause some upheaval within the Android developer community. A number
of published applications required retesting and resubmission to the Android Marketplace to
conform to the new SDK requirements, which were quickly rolled out to all Android phones
in the field as a firmware upgrade, rendering older applications obsolete
The Android Platform
Android is an operating system and a software platform upon which applications are
developed. A core set of applications for everyday tasks, such as Web browsing and email,
are included on Android handsets.
As a product of the Open Handset Alliance’s vision for a robust and open source
development environment for wireless, Android is an emerging mobile development
platform. The platform was designed for the sole purpose of encouraging a free and open
market that all mobile applications phone users might want to have and software developers
might want to develop.
Android’s Underlying Architecture
The Android platform is designed to be more fault-tolerant than many of its predecessors.
The handset runs a Linux operating system, upon which Android applications are executed in
a secure fashion. Each Android application runs in its own virtual machine (Figure 1.8).
Android applications are managed code; therefore, they are much less likely to cause the
phone to crash, leading to fewer instances of device corruption (also called “bricking” the
phone, or rendering it useless).

Figure 1.8 Diagram of the Android platform architecture.

The Linux Operating System
The Linux 2.6 kernel (Figure 1.9) handles core system services and acts as a hardware
abstraction layer (HAL) between the physical hardware of the handset and the Android
software stack.

Figure 1.9 Tux, the Linux kernel mascot.

What’s New in Android 1.5
For Android 1.5, the Linux kernel received an upgrade from version 2.6.25 to 2.6.27.
Although this type of change might not have an obvious effect for the typical Android
developer, it is important to note that the kernel can and will be upgraded frequently. These
seemingly minor incremental updates often include major security, performance, and
functional features.
Kernel changes often have an impact on the security of the underlying device operating
system and provide features and improvements for OEM-level Android device
manufacturers. When stable, these features can be exposed to developers as part of an
Android SDK upgrade, in the form of new APIs and performance enhancements to existing
features.
The Android 1.5 version provides substantial feature enhancements, many of which tie back
to features of the upgraded Linux kernel. Although the kernel memory footprint is larger,
overall system performance has improved and a number of bugs have been fixed.
Some of the core functions the kernel handles include

 Enforcement of application permissions and security
 Low-level memory management
 Process management and threading
 The network stack
 Display, keypad input, camera, WiFi, Flash memory, audio, and binder (IPC) driver

access
Android Application Runtime Environment
Each Android application runs in a separate process, with its own instance of the Dalvik
virtual machine (VM). Based on the Java VM, the Dalvik design has been optimized for
mobile devices. The Dalvik VM has a small memory footprint and multiple instances of the
Dalvik VM can run concurrently on the handset.
Security and Permissions
The integrity of the Android platform is maintained through a variety of security measures.
Applications as Operating System Users
When an application is installed, the operating system creates a new user profile associated
with the application. Each application runs as a different user, with its own private files on
the file system, a user ID, and a secure operating environment.
The application executes in its own process with its own instance of the Dalvik VM and
under its own user ID on the operating system.
Explicitly Defined Application Permissions
To access shared resources on the system, Android applications register for the specific
privileges they require. Some of these privileges enable the application to use phone
functionality to make calls, access the network, and control the camera and other hardware
sensors. Applications also require permission to access shared data containing private and
personal information such as user preferences, user’s location, and contact information.

Applications might also enforce their own permissions by declaring them for other
applications to use. The application can declare any number of different permission types,
such as read-only or read-write permissions, for finer control over the application.
Limited Ad-Hoc Permissions
Applications that act as content providers might want to provide some on-the-fly permissions
to other applications for specific information they want to share openly. This is done using
ad-hoc granting and revoking of access to specific resources using Uniform Resource
Identifiers (URIs).
URIs index specific data assets on the system, such as images and text. Here is an example of
a URI that provides the phone numbers of all contacts:

content://contacts/phones

To understand how this permission process works, let’s look at an example.
Let’s say we’ve got an application that keeps track of the user’s public and private birthday
wish lists. If this application wanted to share its data with other applications, it could grant
URI permissions for the public wish list, allowing another application permission to access
this list without explicitly having to ask for it.
Application Signing for Trust Relationships
All Android applications packages are signed with a certificate, so users know that the
application is authentic. The private key for the certificate is held by the developer. This
helps establish a trust relationship between the developer and the user. It also allows the
developer to control which applications can grant access to one another on the system. No
certificate authority is necessary; self-signed certificates are acceptable.
Developing Android Applications
The Android SDK provides an extensive set of application programming interfaces (APIs)
that is both modern and robust. Android handset core system services are exposed and
accessible to all applications. When granted the appropriate permissions, Android
applications can share data among one another and access shared resources on the system
securely.
Android Programming Language Choices
Android applications are written in Java (Figure 1.10). For now, the Java language is the
developer’s only choice on the Android platform. There has been some speculation that other
programming languages, such as C++, might be added in future versions of Android.

Figure 1.10 Duke, the Java mascot.

No Distinctions Made Between Native and Third-Party Applications
Unlike other mobile development platforms, there is no distinction between native
applications and developer-created applications on the Android platform. Provided the
application is granted the appropriate permissions, all applications have the same access to
core libraries and the underlying hardware interfaces.

Android handsets ship with a set of native applications such as a Web browser and contact
manager. Third-party applications might integrate with these core applications and even
extend them to provide a rich user experience.
Commonly Used Packages
With Android, mobile developers no longer have to reinvent the wheel. Instead, developers
use familiar class libraries exposed through Android’s Java packages to perform common
tasks such as graphics, database access, network access, secure communications, and utilities
(such as XML parsing).
The Android packages include support for

 Common user interface widgets (Buttons, Spin Controls, Text Input)
 User interface layout
 Secure networking and Web browsing features (SSL, WebKit)
 Structured storage and relational databases (SQLite)
 Powerful 2D and 3D graphics (SGL and OpenGL ES 1.0)
 Audio and visual media formats (MPEG4, MP3, Still Images)
 Access to optional hardware such as Location-Based Services (LBS), WiFi, and

Bluetooth
Android Application Framework
The Android application framework provides everything necessary to implement your
average application. The Android application lifecycle involves the following key
components:

 Activities are functions the application performs.
 Groups of views define the application’s layout.
 Intents inform the system about an application’s plans.
 Services allow for background processing without user interaction.
 Notifications alert the user when something interesting happens.

Android Applications can interact with the operating system and underlying hardware using a
collection of managers. Each manager is responsible for keeping the state of some underlying
system service. For example, there is a LocationManager that facilitates interaction with the
location-based services available on the handset.
The ViewManager and WindowManager manage user interface fundamentals.
Applications can interact with one another by using or acting as a ContentProvider. Built-in
applications such as the Contact manager are content providers, allowing third-party
applications to access contact data and use it in an infinite number of ways. The sky is the
limit

1

Module-II:

Introduction to Android: History of Mobile Software Development, The

Open Handset Alliance, Android platform differences.

Android Installation: The Android Platform, Android SDK, Eclipse

Installation, Android Installation, Building a Sample Android Application.

Android Installation

The Android Platform
Android is an OS and a software platform upon which applications are developed.
A core set of applications for everyday tasks, such as Web browsing and email, are

included on Android handsets.
As a product of the Open Handset Alliance’s vision for a robust and open source

development environment for wireless, Android is an emerging mobile development
platform.
The platform was designed for the sole purpose of encouraging a free and open

market
Android’s Architecture
 The Android platform is designed to be more fault-tolerant than many of its

predecessors.
 The handset runs a Linux operating system, upon which Android applications are

executed in a secure fashion.
 Each Android application runs in its own virtual machine.
 Android applications are managed code i.e., they are much less likely to cause the

phone to crash.

2

Android Platform Architecture

Key components of the Android Platform Architecture

A. The Linux Operating System
B. Android Application Runtime Environment
C. Security and Permissions
 Applications as Operating System Users
 Define Application Permissions Explicitly
 Limited Ad-Hoc Permissions
 Application Signing for Trust Relationships

D. Developing Android Applications
 Android Programming Language Choices
 No Distinctions Made Between Native and Third-Party Applications
 Commonly Used Packages
 Android Application Framework

3

A. The Linux Operating System
The Linux kernel handles Core System Services and acts as a Hardware Abstraction
Layer (HAL) between the Physical Hardware of the handset and the Android
Software Stack.
Functions of the Linux Kernel :
1. Enforcement of application permissions and security
2. Low-level Memory Management
3. Process Management and Threading
4. The Network Stack
5. Display, Keypad Input, Camera, Wifi, Flash Memory, Audio, and Binder (IPC)

Driver Access

B. Android Application Runtime Environment
 The Dalvik VM has a small unit of memory and Multiple Instances can run concurrently.
 Each Android application runs in a separate process, with its own instance of the Dalvik

Virtual Machine (VM).
 Based on the Java VM, the Dalvik design has been optimized for mobile devices.

C. Security and Permissions

1. Applications as Operating System Users
When an application is installed, the OS creates User Profile associated with the

application.
 Each application runs as a different user, with own private files , a user ID, and A Secure

Operating Environment.
 The application executes in its Own Process with its own instance of the Dalvik VM and

under its own user ID on the operating system.

2. Define Application Permissions Explicitly
 To access shared resources applications register for the Specific Privileges they require.
 These privileges enable the application to use phone functionality, to make calls,

access the network, and control the camera and other hardware sensors.
 Applications also require permission to access private and personal information such as

user preferences, user’s location, and contact information.
 Applications might also enforce their own permissions by declaring them for other

applications to use.
 The application can declare read-only or read-write permissions for finer control over

the application.

4

3. Limited Ad-Hoc Permissions

 Applications that act as Content Providers might want to provide some on-the-fly
permissions to other applications for specific information they want to share openly.

 This is done using ad-hoc granting and revoking of access to specific resources using
Uniform Resource Identifiers (URIs).

 URIs index specific data assets on the system, such as images and text.
Example of a URI that provides the phone numbers of all contacts:

content://contacts/phones

4.Application Signing for Trust Relationships

All applications pkgs are signed with a certificate, so that the application is authentic.
The Private Key for the certificate is held by the Developer.
 It establish a Trust Relationship between the developer and the user.
 It also allows the developer to Control which applications can grant access to one

another on the system.
No certificate authority is necessary; self-signed certificates are acceptable.

D. Developing Android Applications

The Android SDK provides a set of Application Programming Interfaces (APIs).
Android handset Core System Services are exposed and accessible to all applications. .
When granted the Appropriate Permissions, applications can share data among one
another and access shared resources on the system securely.

1. Android Programming Language Choices

Present Applications are written in Java, Kotlin languages
Other programming languages, such as C++ in future versions of Android.

2.No Distinctions Made Between Native and Third-Party Applications

There is no distinction between Native Applications and Developer Created Applications.
All applications have the same Access to Core Libraries and Hardware Interfaces, with
Appropriate Permissions
Handsets are with a set of native applications such as a Web browser and contact
manager.
Third-party Applications might integrate with these core applications and even extend
them to provide a rich user experience.

5

3. Commonly Used Packages
The Android packages include support for
Common user interface widgets (Buttons, Spin Controls, Text Input)
User interface layout
Secure networking and Web browsing features (SSL, WebKit)
Structured storage and relational databases (SQLite)
Powerful 2D and 3D graphics (SGL and OpenGL ES 1.0)
Audio and visual media formats (MPEG4, MP3, Still Images)
Access to optional hardware such as Location-Based Services (LBS), WiFi, and Bluetooth
4. Android Application Framework
The Android application framework provides everything necessary to implement an
application.
The components Android application lifecycle :
Activities are functions the application performs.
Groups of views define the application’s layout.
Intents inform the system about an application’s plans.
Services allow for background processing without user interaction.
Notifications alert the user when something interesting happens.

Android SDK

Android SDK or Android Software Development Kit which is developed by
Google for Android Platform.

SDK is a collection of Libraries and Development Tools that are essential for
Developing Android Applications.

Whenever Google released a new version or update, a corresponding SDK also
released.

Android SDK consists of tools which are very essential for the development of
Android Application.

These tools provide a smooth flow of the Development Process from
developing and debugging.

Android SDK is compatible with all operating systems such as Windows, Linux,
macOS, etc.

 First Android SDK released in 23 September 2008.
The first Android mobile was publicly released with Android 1.0 of the T-Mobile

G1 (aka HTC Dream) in October 2008.

6

Components of Android SDK
It consists of a complete set of development and debugging tools
1. Android SDK Build tool.
2. Android Emulator.
3. Android SDK Platform-tools.
4. Android SDK Tools.

1. Android SDK Build-Tools
Android SDK build tools are used for building Actual

Binaries of Android App.
The main functions of SDK Build tools are Built, Debug,

Run and Test applications.
The Latest Version of the Android SDK Build tool is 30.0.3.

2. Android Emulator
An Android Emulator is a device that simulates an Android device
on system
Android Emulator provides a Virtual Device on the System where
we run our Application
The emulator’s come with the configuration for Various android
phones, tablets, Wear OS, and Android TV devices

7

3. Android SDK Platform-Tools

1. Android Debug Bridge (ADB)

It is a Command Line Tool that helps to Communicate a smartphone, tablet, smartwatch,

set-top box, or any other device that can run the Android .

It allows us to perform Installing and Debugging App etc.

ADB contains three components:

i. Client-which sends commands. The client runs on your development machine.

Invoke a client from a command-line terminal by issuing an ADB command.

ii. A daemon- which runs commands on a device. The daemon runs as a background

process on each device.

iii. A server, which manages communication between the client and the daemon.

The server runs as a background process on your development machine.

2. Fastboot allows to flash a device with a new system image.

3. Systrace tools help to collect and inspect timing information and App Debugging.

4. Android SDK Tools
SDK tools are generally platform independent and are required which android
platform you are working on. When you install the Android SDK into your system,
these tools get automatically installed. The list of SDK tools has been given below

Sr.No Tool &Ddescription

1 Android 9441452588
This tool lets you manage AVDs, projects, and the installed components of the SDK

2 ddmsThis tool lets you debug Android applications

3 Draw 9-PatchThis tool allows you to easily create a NinePatch graphic using a
WYSIWYG editor

4 Emulator: This tools let you test your applications without using a physical device

5 Mksdcard: Helps you create a disk image (external sdcard storage) that you can use
with the emulator

6 proguardShrinks, optimizes, and obfuscates your code by removing unused code

7 Sqlite3: Lets you access the SQLite data files created and used by Android
applications

8 Traceview:Provides a graphical viewer for execution logs saved by your application

9
AdbAndroid Debug Bridge (adb) is a versatile command line tool that lets you
communicate with an emulator instance or connected Android-powered device.

8

Code Name Version API Level Release Date
No codename 1.0 1 September 23, 2008
No codename 1.1 2 February 9, 2009

Cupcake 1.5 3 April 27, 2009
Donut 1.6 4 September 15, 2009
Eclair 2.0 - 2.1 5 - 7 October 26, 2009
Froyo 2.2 - 2.2.3 8 May 20, 2010

Gingerbread 2.3 - 2.3.7 9 - 10 December 6, 2010
Honeycomb 3.0 - 3.2.6 11 - 13 February 22, 2011

Ice Cream Sandwich 4.0 - 4.0.4 14 - 15 October 18, 2011
Jelly Bean 4.1 - 4.3.1 16 - 18 July 9, 2012

KitKat 4.4 - 4.4.4 19 - 20 October 31, 2013
Lollipop 5.0 - 5.1.1 21- 22 November 12, 2014

Marshmallow 6.0 - 6.0.1 23 October 5, 2015
Nougat 7.0 24 August 22, 2016
Nougat 7.1.0 - 7.1.2 25 October 4, 2016

Oreo 8.0 26 August 21, 2017
Oreo 8.1 27 December 5, 2017
Pie 9.0 28 August 6, 2018

Android 10 10.0 29 September 3, 2019
Android 11 11 30 September 8, 2020
Android 12 12 31 Oct-2021

Android 13 13 32 August 2022

Android versions
Dalvik Virtual Machine - DVM

Dalvik is a name of a town in Iceland.
 The Dalvik VM was written by Dan Bornstein.
 The Dalvik Virtual Machine (DVM) is an android virtual machine optimized for mobile

devices.
 It optimizes the virtual machine for memory, battery life and performance.
 The Dex compiler converts the class files into the .dex file that run on the Dalvik VM.

Multiple class files are converted into one dex file.

1. The javac tool compiles the java
source file into the class file.

2. The dx tool takes all the class files of
your application and generates a
single .dex file.

3. It is a platform-specific tool.
4. The Android Assets Packaging Tool

(aapt) handles the packaging
process.

9

Install and Setup Eclipse IDE For Android App Development

 Android Application Development can be done using Android Studio as well
as Eclipse IDE.

We can create android applications in Eclipse IDE using the ADT plugin.
 Eclipse is preferred for creating small android applications.
 Eclipse IDE is an open-source software used by developers,
We will be using Eclipse IDE to set up Android App Development.
 First, we need to install Eclipse IDE, and then we will be setting it up for

Android App Development.

Steps to Install Eclipse IDE
 To install Eclipse IDE, click on Download Eclipse
 Download JDK (Java Development Kit) and Android Studio as well.
 In File Explorer, go to Downloads – “Eclipse IDE” will be downloaded.
 Open Eclipse IDE, choose Eclipse IDE for Java Developers, and Install.
 Eclipse IDE environment is ready, now it’s time to set up Android Development.

Steps to Setup Eclipse IDE for Android App Development
Step 1: Open Eclipse IDE.
Step 2: Select Help, Click on “Install New Software”

10

Step 3: Type “https://dl-ssl.google.com/android/eclipse/” in the “Work With” section and
click on Add. Further, a new Dialog box will appear, type Name – ADT Repository and Click
on Add.

Step 4: You can see Developer Tools under Name – tick the box, and then click on Next. A
dialog box will appear, click on Next and then click on Finish. After that, Installation will
begin.

11

The installation will take some time:

Step 5: After the installation is completed, Eclipse will be restarted. After the restart, a
dialog box will appear for setting up the Preferences.
Click on Open Preferences then Click on Proceed.
If the dialog box does not appear then go to Eclipse -> Window -> Preferences.

12

Step 6: Browse SDK Location of Android (C:\Program Files\Android\android-sdk) and Click
Apply.
Note: SDK Path is also present in Android Studio -> Tools -> SDK Manager -> Copy the
Android SDK Location path and paste it here.

Step 7: Click on Install new SDK then Next. Another dialog box will appear, Accept all the three
packages and Click on Install.

After installation of packages, SDK Manager will appear for installation of API Level Build
Tools and System Images. Click on Install.

13

Step 8: After installation is completed, Go to Eclipse then Select Window then Click on
Android Virtual Device Manager.
A dialog box will appear, Select existing AVD and Click on Edit.

Fill in all the details as per the
below image. Click OK.

Step 9: To create an android application, Select File -> New -> Other, and then below dialog
box will appear Select Android -> Android Application Project then Click on Next. Follow the
steps and then click on Finish.

Creating an Android Application using Eclipse IDE

14

Step 10: Eclipse IDE setup is completed for Android Application Development.

Building a Sample Android Application

1. Create a simple Android
Application using Android studio.

2.Start a new android studio project and specify
Application Name, Package Information and
Location of the project

3. Select the form factors your application runs
on and specify Minimum SDK (Android 5.0)

15

4.Selecting the activity to mobile, it specifies the Default Layout for Applications

5. Opens the Development Tool to write the application code

Anatomy of Android Application
Before run app, a few directories and files in the Android project

Sl.No. Folder, File

1 Java

2 res/drawable-
hdpi

3 res/layout

4 res/values

5 AndroidManifest.
xml

6 Build.gradle

16

Sl.No. Folder, File Description

1 Java
This contains the .java source files for your project. By default,
it includes an MainActivity.java source file having an activity
class that runs when your app is launched using the app icon.

2 res/drawable-
hdpi

This is a directory for drawable objects that are designed for
high-density screens.

3 res/layout This is a directory for files that define your app's user
interface.

4 res/values This is a directory for other various XML files that contain a
collection of resources, such as strings and colours definitions.

5 AndroidManifest.
xml

This is the manifest file which describes the fundamental
characteristics of the app and defines each of its components.

6 Build.gradle

This is an auto generated file which contains
compileSdkVersion, buildToolsVersion, applicationId,
minSdkVersion, targetSdkVersion, versionCode and
versionName

1. The Main Activity File
The main activity code is a Java file MainActivity.java.
This is the actual application file which converted to a Dalvik executable and runs your
application.
package com.example.helloworld;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
public class MainActivity extends AppCompatActivity
{
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
}
}

Here,
R.layout.activity_main refers to the activity_main.xml file located in the res/layout folder.
The onCreate() method is one of many methods that are figured when an activity is loaded.

17

2. The Manifest File
Whatever component developed as a part of your application, declare all its components
in a manifest.xml which resides at the root of the application project directory.
This file works as an interface between Android OS and your application.
For example, a default manifest file will look like as following file −

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.tutorialspoint7.myapplication">
<application android:allowBackup="true"

android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:supportsRtl="true"
android:theme="@style/AppTheme">

<activity android:name=".MainActivity">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
</application>
</manifest>

Here
<application>...</application> tags enclosed the components related to the application.
Attributes:
android:icon will point to the application icon available under res/drawable-hdpi.
The <activity> tag is used to specify an activity
android:name attribute specifies the fully qualified class name of the Activity subclass
android:label attributes specifies a string to use as the label for the activity.
android.intent.action.MAIN to indicate that this activity serves as the entry point for the
application.
android.intent.category.LAUNCHER to indicate that the application can be launched from
the device's launcher icon.
The @string refers to the strings.xml file
@string/app_name refers to the app_name string defined in the strings.xml file (e.g.
"HelloWorld“)

List of tags used in manifest file to specify different Android application components .
<activity>elements for activities
<service> elements for services
<receiver> elements for broadcast receivers
<provider> elements for content providers

18

3. The Strings File
The strings.xml file is located in the res/values folder and it contains all the text that
application uses.
Example: The names of buttons, labels, default text
This file is responsible for their textual content.
Example:
<resources>

<string name="app_name">HelloWorld</string>
<string name="hello_world">Hello world!</string>

<string name="menu_settings">Settings</string>
<string name="title_activity_main">MainActivity</string>

</resources>

4. The Layout File
The activity_main.xml is a layout file available in res/layout directory.
It is referenced by our application when building its interface.
We will modify this file very frequently to change the layout of your application

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:padding="@dimen/padding_medium"
android:text="@string/hello_world" tools:context=".MainActivity" />

</RelativeLayout>

19

5.Running the Application

To run the app from Android studio, open one of your project's activity files and
click Run icon from the tool bar.
Android studio installs the app on your AVD and starts it and if everything is fine
with your set-up and application, it will display following Emulator window −

Components of IDE for Android

The Android Studio project contains one or more modules with resource files and source
code files.

•Android App Modules
•Library Modules
•Google App Engine Modules

By default, Android Studio displays our project files
in the Android project view.
Build files are visible to the top-level under Gradle
Scripts.
And the App Module contains the following
folders:
 manifests: It contains the AndroidManifest.xml

file.
 java: It contains the source code of Java files,

including the JUnit test code.
 res: It contains all non-code resources, UI

strings, XML layouts, and bitmap images.

20

Android Studio User Interface

1. Toolbar: provides us how to running apps and launching Android tools.

2. Navigation Bar: Helps in navigating to project and open files for editing. It gives a

Compact View of structure visible in the Project window.

3. Editor Window: is a space where we can create and modify our code.

4. Tool Window Bar: Contains buttons to expand and collapse individual tool windows.

5. Tool Windows: Access specific tasks like search, project management, version control etc.

6. Status Bar: displays the status of our project and IDE, as well as any messages or warnings.

Android Studio Tool Window

Tool window Windows /Linux Mac

Project Alt+1 Command+1

Version Control Alt+9 Command+9

Run Shift+F10 Control+R

Debug Shift+F9 Control+D

Logcat Alt+6 Command+6

Return to Editor Esc Esc

Hide all Tool Windows Control+Shift+F12 Command+Shift+F12

21

Gradle Build System

Gradle build used as the foundation of the Build System.

It uses more Android-specific capabilities provided by the Android plugin for Gradle.

This build system runs independently from the command line and integrated tool

from the Android Studio menu.

We can use build features for the following purpose:

 Configure, customize, and extend the build process.

 Create multiple APKs from our app, with different features using the same project

and modules.

 Reuse resource and code across source sets.

Android Core Building Blocks
An android component is a piece of code that has a well defined life cycle e.g. Activity,
Receiver, Service etc.
The core building blocks / components of Android :

Activities
 views
Intents
Services
content providers
fragments and AndroidManifest.xml.

1. Activity
An activity is a class that represents a single screen. It is like a Frame in AWT.

2. View
A view is the UI element such as button, label, text field etc. Anything that you see is a view.

22

3. Intent
Intent is used to invoke components. It is mainly used to:
 Start the service
 Launch an activity
 Display a web page
 Display a list of contacts
 Broadcast a message
 Dial a phone call etc.
Example:
Intent intent=new Intent(Intent.ACTION_VIEW);
intent.setData(Uri.parse("http://www.it.mrec.ac.in"));
startActivity(intent);

4. Service
Service is a background process that can run for a long time.
There are two types of services local and remote.
Local Service is accessed from within the application
Remote Service is accessed remotely from other applications running on the same
device.

5. Content Provider
Content Providers are used to share data between the applications.

6. Fragment

Fragments are like parts of activity.

An activity can display one or more fragments on the screen at the same time.

7. AndroidManifest.xml

It contains information about activities, content providers, permissions etc.

It is like the web.xml file in Java EE.

8. Android Virtual Device (AVD)

It is used to test the android application without the need for mobile or tablet etc.

It can be created in different configurations to emulate different types of real devices.

23

Android Emulator

 The Android emulator is an Android Virtual Device (AVD), which represents a specific

Android device.

We can use the Android emulator as a target device to execute and test our Android

application on our PC.

 The Android emulator provides almost all the functionality of a real device.

We can get the incoming phone calls and text messages.

 It also gives the location of the device and simulates different network speeds.

Android emulator simulates rotation and other hardware sensors.

 It accesses the Google Play store, and much more

 Testing Android applications on emulator are sometimes faster and easier than doing on a

real device.

 For example, we can transfer data faster to the emulator than to a real device connected

through USB.

 The Android emulator comes with predefined configurations for several Android phones,

Wear OS, tablet, Android TV devices.

Requirement and Recommendations
The Android emulator takes additional requirements beyond the basic system requirement
for Android Studio.
SDK Tools 26.1.1 or higher
64-bit processor
Windows: CPU with UG (unrestricted guest) support
HAXM 6.2.1 or later (recommended HAXM 7.2.0 or later)

Install the Emulator
The Android emulator is installed while installing the Android Studio.
However some components of emulator may or may not be installed while installing
Android Studio.
To install the emulator component, select the Android Emulator component in the SDK
Tools tab of the SDK Manager.

24

Run an Android app on the Emulator
To start the Android Emulator and run an application in our project:
1. In Android Studio, we need to create an Android Virtual Device (AVD) that the
emulator can use to install and run your app. To create a new AVD:-
1.1 Open the AVD Manager by clicking Tools > AVD Manager.

1.2 Click on Create Virtual Device, at the bottom of the AVD Manager dialog. Then Select
Hardware page appears.

1.3 Select a Hardware Profile and then click Next. The System Image page appears.

1.4 Select the System Image for the particular API level and click Next. This leads to open
a Verify Configuration page.

1.5 Change AVD properties if
needed, and then
click Finish.

25

2. In the toolbar, choose the AVD, which we want to run our app from the target device
from the drop-down menu.

3. Click Run.

Launch the Emulator without first running an app
To start the emulator:
Open the AVD Manager.
Double-click an AVD, or click Run
While the emulator is running, we can run the Android Studio project and select the
emulator as the target device.
We can also drag an APKs file to install on an emulator, and then run them.

Run and stop an emulator, and clear data

From the Virtual Device page, we can perform the following operation on emulator:

26

To run an Android emulator that uses an AVD, double-click the AVD, or click Launch

To stop the running emulator, right-click and select Stop, or click Menu ▼ and select Stop.

If we want to clear the data from an emulator and return it to the initial state when it was

first defined, then right-click an AVD and select Wipe Data.

Or click menu ▼ and select Wipe Data.

1

Module-III
Android Application Design Essentials

Android Terminologies
Application Context
Activities
Services
Intents
Receiving and Broadcasting Intents

Android File Settings
Manifest File and its Common Settings
Intent Filter
Permissions
Managing Application Resources in a Hierarchy
Working with Different Types of Resources

Context

Activity

Intent

Service

Broadcast Receivers

Content Providers

Views

Fragments

Resources

Manifest

Android Application Development Terminology

2

1. Context
The context is the Central Command Center for an Android application.
All Application-Specific Functionality can be accessed through the context.
Context is the “Base Class” for Activity, Service, Application, etc
To get information of another part of the program (Activity/Package/Application).
1. Loading a Resource.
2. Launching a New Activity.
3. Creating Views.
4. Obtaining System Service.
Methods used to get context
1.getApplicationContext()
2.getContext()
3.getBaseContext()
4.this (when in the activity class)

2. Activity
An Android application is a Collection of Tasks, where each task is called an Activity.
Each Activity within an application has a Unique Task .
Unlike programming paradigms in which apps are launched with a main() method, the
Android initiates code in an Activity instance by invoking Specific Callback Methods
An activity is implemented as a subclass of Activity class as
public class MainActivity extends Activity
{ //Implementation }

3. Intent
An intent is an abstract description of an operation to be performed
The Android follows Asynchronous Messaging Mechanism to
match task requests with the appropriate Activity.
Each request is packaged as an Intent to do something.
Example:
a) Sending the User to Another App
b) Getting a Result from an Activity
c) Allowing Other Apps to Start Your Activity

4. Service
A Service is an Application Component that can perform Long-running Operations in the
background. It does not provide a User Interface.
Once started, it might Continue Running even after the user switches to another application,
Example:

i. Handle Network Transactions
ii. Play Music
iii. Perform File I/O
iv. Interacting with a Content Provider

Types of Services
i. Foreground-Music Player and Downloading
ii. Background-Syncing and Storing data
iii. Bound

3

5. Broadcast Receivers
Handles communication between Android OS and Applications.
Broadcast Receivers respond to broadcast messages from other applications or from the
system.
Two important steps to make BroadcastReceiver
i. Creating the Broadcast Receiver.
ii. Registering Broadcast Receiver
public class MyReceiver extends BroadcastReceiver {
public void onReceive(context,intent) {
//Code/Logic } }

6. Content Providers
Handles data and database
management issues.
i. Manage Access to Data stored by

itself, stored by other apps, and
provide a way to Share Data with
other apps

ii.They Encapsulate the data, and
provide Data Security.

iii.Allow other applications to
Securely Access and Modify our
app data.

Content Providers Manage
Access to Storage

Illustration of
Migrating
Content Provider
Storage.

4

8. Fragment
A Fragment is a piece of an activity or sub-activity which enable more modular activity
design. Fragments were added to the Android API in Honeycomb Version API 11.
Types of Fragments:
a. Single Frame Fragments: Using in hand hold devices like mobiles, here we can show
only one fragment as a view.
b. List Fragments − Fragments having Special List View is called as list fragment
c. Fragments Transaction − Using with it we can move one fragment to another fragment.

7. Views
View s are the basic building block for User Interface Components.
Views can be used to create a useful I/O fields. They are same as, input text field, image tag
to show images, radio field in HTML.
i. Text View
ii. EditText
iii. Button
iv. ImageView
v. ImageButton
vi. CheckBox
vii. Radio button
viii. ListView
ix. Spinner

9. Manifest:
The manifest file describes essential information about your app to the Android build tools,
the Android operating system, and Google Play
It contains information about activities, content providers, permissions etc.
The manifest file is required to declare the following:
The components of the App-activities, Services, Broadcast Receivers, & Content

Providers
The Permissions to access protected parts of the system or other apps
The Hardware and Software features the app requires

5

10.Resources
Resources are the additional files and static content that your code uses, such as
i. Bitmaps
ii. Layout Definitions
iii. User Interface Strings
iv. Animation Instructions etc..
We placed each type of resource in a specific subdirectory of your project's res/ directory

Application Context
The Application Context is the Central Location for all top-level application functionality.
It's used to get the context associated with the Application, which contains all of the activities
running within it.
It can be thought of as a layer that sits behind the entire program.
So, as long as it does not kill the entire Application, this context stays alive.
The Context class can be used to:
a. Manage Application-specific Configuration , Application-wide Operations and data.
b. Access settings and resources shared across multiple Activity instances.
1. getApplicationContext(): To Retrieving the Application Context
To retrieve the Context for the Current Process we can use the getApplicationContext()
method. It can be represented as:

Context context = getApplicationContext();
Using the Application Context
After retrieving a valid application Context, it can be used to access application-wide features
and services.
2. getResources(): To Retrieving Application Resources
To retrieve application resources we can use the getResources() by using its Resource Identifier.
Example: Retrieves a String Instance from the application resources by its resource ID

String greeting = getResources().getString(R.string.hello);

6

3. getSharedPreferences() : Accessing Application Preferences
The SharedPreferences class can be used to save simple application data, such as
configuration settings.
Shared Preferences allow you to save and retrieve data in the form of (key,value).
Example:
SharedPreferences SP = getSharedPreferences(MyPREFERENCES, Context.MODE_PRIVATE);
Here the first parameter is the key and the second parameter is the MODE.
4. Accessing Other Application Functionality
The application Context provides access to a number of other top-level application features.
i. Launch Activity instances
ii. Retrieve assets packaged with the application
iii. Request a system service (for example, location service)
iv. Manage private application files, directories, and databases
v. Inspect and enforce application permissions

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"
android:label="@string/app_name"
android:theme="@style/MyCustomTheme">

Activity:
The Android Activity class (android.app.Activity) is core to any Android application.
User can Define and implement an Activity class for each screen in the application.
Example: A simple game application have the following five Activities, as shown in Figure :

5.A Help/About screen: This activity might display
the information the user might need to play the game.

1.A Startup or Splash screen: Serves as the primary
entry point to the application and displays the Name
and Version and transitions to the Main menu after a
short interval.

2. A Main Menu screen: Acts as a switch to drive
the user to the core Activities of the application.
Here the users must choose what they want to do
within the application.

3.A Game Play screen: This activity is where the core
game play occurs.

4.A High Scores screen: This activity might display
game scores or settings.

7

The Activity Stack

The Android operating system keeps track of all Activity objects running by placing
them on an Activity stack.

When a new Activity starts, the Activity on the top of the stack pauses, and the new
Activity pushes onto the top of the stack.

When that Activity finishes, that Activity is removed from the activity stack, and the
previous Activity in the stack resumes.

Android applications are responsible for managing their state and memory, resources,
and data.

They must pause and resume seamlessly.

The Lifecycle of an Android Activity

Activity Callbacks are used to Manage
Application State and Resources

Different state changes within the
Activity are represented by a series of
callbacks are shown in fig.

}

public class MyActivity extends Activity
{
protected void onCreate(Bundle
savedInstanceState);
protected void onStart();
protected void onRestart();
protected void onResume();
protected void onPause();
protected void onStop();
protected void onDestroy();
}

Method stubs for the callbacks of the
Activity class:

8

Sr.No Callback Description

1 onCreate() This is the first callback and called when the activity is first created.

2 onStart() This callback is called when the activity becomes visible to the user.

3 onResume() This is called when the user starts interacting with the application.

4
onPause()

The paused activity does not receive user input and cannot execute any
code and called when the current activity is being paused and the
previous activity is being resumed.

5 onStop() This callback is called when the activity is no longer visible.

6 onDestroy() This callback is called before the activity is destroyed by the system.

7 onRestart() This callback is called when the activity restarts after stopping it.

1. onCreate() : Initializing Static Activity Data
When an Activity first starts, the onCreate() method is called.
The onCreate() method has a single parameter, a Bundle, which is null if this is a newly

started Activity.
 If this Activity was killed due to low memory and is restarted, the Bundle contains the

previous state information and it can reinitiate.

2. onResume() :Initializing and Retrieving Activity Data
onResume() method is called when the Activity reaches the top of the activity stack and
becomes the foreground process.
The onResume() method is the appropriate place to start audio, video, and animations

3. onPause(): Stopping, Saving, and Releasing Activity Data
The onPause() method alerts the current Activity that it is being pushed down the activity

stack when another Activity rises to the top of the activity stack.
Save any uncommitted data when an application does not resume.
The new foreground Activity is not started until the onPause() method returns.
Activity should stop any audio, video, and animations it started in the onResume()

method.

9

5. onStop(): Avoiding Activity Objects Being Killed
The Android OS provides the ability to terminate any activity that has been paused,

stopped, or destroyed in low memory situations.
Means that any Activity not in the foreground is shutdown.
 If the Activity is killed after onPause(), the onStop() and onDestroy() methods not called.
The more resources released by an Activity in the onPause() method, the less likely the

Activity is to be killed while in the background.

4. onDestroy(): Destroy Static Activity Data
When an Activity is being destroyed, the onDestroy() method is called.
The onDestroy() method is called for one of two reasons:
i. The Activity has completed its lifecycle voluntarily (or)
ii. The Activity is being killed by the Android OS because it needs the resources.

6. onSaveInstanceState(): Saving Activity State into a Bundle
If an Activity is weak to killed by the Android OS due to low memory, the Activity can save
state information to a Bundle object using the onSaveInstanceState() .
This call is not guaranteed under all circumstances, so use the onPause() method for essential
data commits.

package example.jdbm.com.activitylifecycle;
import android.app.Activity;

import android.os.Bundle;
import android.util.Log;
public class MainActivity extends Activity

{
@Override

protected void onCreate(Bundle savedInstanceSta
te)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Log.d("lifecycle","onCreate invoked");

}
@Override
protected void onStart() {

super.onStart();
Log.d("lifecycle","onStart invoked");

}
@Override
protected void onResume() {

super.onResume();
Log.d("lifecycle","onResume invoked");

}

@Override
protected void onPause() {

super.onPause();
Log.d("lifecycle","onPause invoked");

}
@Override
protected void onStop() {

super.onStop();
Log.d("lifecycle","onStop invoked");

}
@Override
protected void onRestart() {

super.onRestart();
Log.d("lifecycle","onRestart invoked");

}
@Override
protected void onDestroy() {

super.onDestroy();
Log.d("lifecycle","onDestroy invoked");

}
}

10

Services

 A service is a component/activity that facilitates an application to run in the
background in order to perform Long Running Tasks.

 The aim of a service is to ensure that the application remains active in the
background so that the user can operate multiple applications at the same
time.

 An User Interface is not required for services as it is operate long-running
processes without any user intervention.

 A service can run continuously in the background even if the application is
closed or the user switches to another application

 Application components can bind itself to service to carry out Inter Process
Communication(IPC).

Difference between Services and Threads
Thread: Provided by the OS to allow the user to perform operations in the
background.
Service: An Android component that performs a Long-running Operation

Types of Android Services

1. Foreground Services
2. Background Services
3. Bound Services

1. Foreground Services
Services that notify the user about its ongoing operations.
 Users can interact with the service by the notifications provided about the ongoing task.
Example: Downloading a file (User keep track of the progress and pause and resume the
process).

2. Background Services
 Background services do not require user intervention.
 These services do not notify the user about ongoing background tasks and users

cannot access them.
Example: Schedule syncing of data or storing of data

3. Bound Services:
A service is bound when an application component binds to it by calling bindService().
Offers a client-server interface that allows components to interact with the service, send

requests, receive results and IPC
A bound service runs only as long as another application component is bound to it.
Multiple components can bind to the service at once
The service is destroyed when all of them unbind.

11

onStartCommand() Method
The onStartCommand() must return an integer value that describes how the system should
continue the service in the event that the system kills it.
The onStartCommand() return one of the following constants:
1. START_NOT_STICKY
2. START_STICKY
3. START_REDELIVER_INTENT

Starting a Service: To start a service from an activity or application component by passing
an Intent to startService() or startForegroundService(). The Android system calls the
service's onStartCommand() and passes it the Intent, which specifies which service to start.
Example:
An activity can start the service “HelloService” using an intent with startService()

Intent intent = new Intent(this, HelloService.class);
startService(intent);

Stopping a Service: A started service must manage its own lifecycle. That is, the system
doesn't stop or destroy the service unless it must recover system memory and the service
continues to run after onStartCommand(). A service can be stopped only in one of the
two cases
Itself by calling stopself(), or
Another component can stop it by calling stopservice().

The Life Cycle of Android Services

Services have 2 paths to complete its life cycle
1. Started
2. Bounded.

1. Started Service (Unbounded Service)
 A service will initiate when an application component calls the startService() .
 Once initiated, the service can run continuously in the background even if the

component is Destroyed which was responsible for the start of the service.
Methods used to stop the running service:
a. stopService()
b. stopSelf()

2. Bounded Service
It can be treated as a server in a client-server interface.
Application components can Send Requests to the service and it can fetch results.
Methods:
1. bindService():
A service is bounded when an application component binds itself with a service
2. unbindService():
To stop the unning service, all the components must unbind themselves from the service.

12

a) startService() b) bindService()

Lifecycle of a Service

The Lifetime of a service :
The time that onCreate() is
called and the time
that onDestroy() returns.

onCreate() and onDestroy() are
called for all services, whether
they're created
by startService() or bindServic
e().

Methods Description

onStartCommand()

onStartCommand() is called when a component (eg: activity) requests to
start a service.
Once the service is started, it can be stopped using stopService() or
stopSelf().

onBind()
It is invoked when an application component calls the bindService().
If the binding of service is not required then it returns NULL.

onUnbind()
The Android System invokes onUnbind() when all the clients get
disconnected from a particular service interface.

onRebind()
Once all clients are disconnected from the particular interface of service
and there is a need to connect the service with new clients, the system
calls onRebind().

onCreate()
Whenever a service is created either using onStartCommand() or
onBind(), the android system calls onCreate().
This method is necessary to perform a one-time set-up.

onDestroy()
When a service is no longer in use, the system invokes onDestroy() .
Services must implement it in order to clean up resources like registered
listeners, threads, receivers, etc.

Methods of Android Services

13

An Intent is a Messaging Object which is used to request an action from an App
Component. Intents facilitate communication between components in several ways.
There are three use cases:
1. Starting an Activity
2. Starting a Service
3. Delivering a Broadcast

Intents

1. Starting an Activity using Intent
An Activity represents a single screen in an app. An activity started using an Intent by

using startActivity() method.
1. startActivity():

To start a new instance of an Activity by passing an Intent. which describes the activity
to start and carries any important data.

2. startActivityForResult():
To receive a result from the activity.

3. onActivityResult():
To receives the result as a separate Intent object.

2. Starting a Service
A Service is a component that performs operations in the background without a user
interface.
A Service can be started with a JobScheduler (Android 5.0 (API level 21) and Later).
Also a service can be start by using methods of the Service class. (Earlier to Android 5.0
(API level 21)
A. startService():

A service can be start to perform a one-time operation (e,g,downloading a file) by
passing an Intent, which describes the service to start and carries any needed data.

B. bindService():
If the service is designed with a Client Server Interface, bind to the service from
another component by passing an Intent.

3. Delivering a Broadcast
A broadcast is a message that any app can receive.
The system delivers Various Broadcasts for system events.
Example:
when the system boots up or
when the device starts charging.

User can deliver a broadcast to other apps by passing an Intent to
sendBroadcast() or
sendOrderedBroadcast().

14

Intent Types:
There are two types of intents
1. Explicit Intents
2. Implicit Intents

1.Explicit Intents
Requires Specific Package /a fully-qualified Component class name.
Typically use an explicit intent to start a component in your own app.
Example:
Start a new activity within app in response to a user action (or)
Start a service to download a file in the background.

Intent downloadIntent = new Intent(this, DownloadService.class);
downloadIntent.setData(Uri.parse(fileUrl));
startService(downloadIntent);

2. Implicit Intents
Specific component name not required , but declare a General Action to perform, which
allows a component from another app to handle it.
Example:
If user wants to show the user a location on a map, use an implicit intent to request that
another app shows a specified location on a map.

[1] Activity A creates an Intent with an action description and passes it to startActivity().

[2] The Android System searches all apps for an intent filter that matches the intent.

When a match is found,

[3] the system starts the matching activity (Activity B) by invoking its onCreate() method

and passing it the Intent.

An Implicit Intent

15

Building an Intent

An Intent carries information that the Android system uses to determine which component to
start and information that the recipient component uses in order to properly perform the
action.
An Intent contains the following information
1. Component Name
2. Action
3. Data
4. Category
5. Extras
6. Flags

1.Component Name
The name of the component to start.
This field is a ComponentName object, which specify a fully qualified class name of the
target component, including the package name of the app.
Example: com.example.ExampleActivity
Set the component name with setComponent(), setClass(), setClassName(), or with
the Intent constructor.

2. Action
A string that specifies the generic action to perform (such as view or pick).
Common Actions for starting an activity:
ACTION_VIEW:
Use this action in an intent with startActivity() when some information that an activity can
show to the user.
Example: View Photo in a gallery app (or) an address to view in a map app.
ACTION_SEND:
It is like a share intent, use this in an intent with startActivity() when you have some data that
the user can share through another app.
Example: An email app or Social sharing app.
To Define our own actions, include app's package name as a prefix .
Example:static final String ACTION_TIMETRAVEL =
"com.example.action.TIMETRAVEL";.
3. Data
The URI (a Uri object) that references the data to be acted on and/or the MIME type of that
data. The type of data supplied is generally dictated by the intent's action.
The following methods are used to supply data to the intent:

1. setData():To set only the data URI type.
2. setType(): To set only the MIME type, call.
3. setDataAndType(): Set both explicitly .

16

4. Category
A string containing additional information about the kind of component that should handle
the intent. Any number of category descriptions can be placed in an intent.
Some common Categories:
CATEGORY_BROWSABLE:
The target activity allows itself to be started by a web browser to display data referenced by a
link, such as an image or an e-mail message.
CATEGORY_LAUNCHER
The activity is the initial activity of a task and is listed in the system's application launcher.
5. Extras
Key-value pairs to carry addl. info. required to accomplish the requested action.
Add extra data with various putExtra() methods, accepting two parameters:
the key name and the value.
Also create a Bundle object with all the extra data, then insert the Bundle in
the Intent with putExtras().
The Intent class specifies many EXTRA_* constants for standardized data types:
Example: static final String EXTRA_GIGAWATTS =
"com.example.EXTRA_GIGAWATTS";
6. Flags
Flags are defined in the Intent class that function as metadata for the intent.
The flags instruct the Android system how to launch an activity and how to treat it after it's
launched.
Example: public Intent setFlags (int flags)

Broadcast intents are Intent Objects that are broadcast via a call to the sendBroadcast(),
sendStickyBroadcast() or sendOrderedBroadcast() methods of the Activity class.

Broadcast intents are also used to notify interested applications about key system events.
A broadcast intent is a Background Operation that the user is not normally aware of
Example: The external power supply or headphones being connected or disconnected
Identifying the Broadcast Event :
The Action String identifies the broadcast event and must be unique and normally uses the
application’s package name syntax.
When a broadcast intent is created, it includes an Action String along with Optional Data
and a Category String.
a. putExtra() : Data is added to a broadcast intent using key-value pairs in conjunction with
this method of the intent object.
b. addCategory() : The Optional Category String assigned to a broadcast intent via a call
Example:
Intent intent = new Intent();
intent.setAction("com.example.Broadcast");
intent.putExtra("MyData", 1000);
sendBroadcast(intent);

Receiving and Broadcasting Intents

17

If an intent is to be allowed to start a component of a stopped application, the flag
FLAG_INCLUDE_STOPPED_PACKAGES can be appended to the intent before it is sent.
Example:
Intent intent = new Intent();
intent.addFlags(Intent.FLAG_INCLUDE_STOPPED_PACKAGES);
intent.setAction("com.example.Broadcast");
intent.putExtra("MyData", 1000);
sendBroadcast(intent);

Example:
package com.example.broadcastdetector;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
public class MyReceiver extends BroadcastReceiver {

public MyReceiver()
{ }
@Override
public void onReceive(Context context, Intent intent) {

// Implement code here to be performed when broadcast is detected
} }

Starting Component of a Stopped Application

Broadcast Receivers

1. Broadcast Receivers are used to respond to these system-wide events.
2. Broadcast Receivers allow us to register for the system and application events, and when

that event happens, then the register receivers get notified.
There are mainly two types of Broadcast Receivers:
 Static Broadcast Receivers:

These types are declared in the manifest file and works even if the app is closed.
 Dynamic Broadcast Receivers

These types of receivers work only if the app is active or minimized.

 An application listens for specific broadcast intents by registering a broadcast receiver.
 These are implemented by extending the BroadcastReceiver class and overriding the

onReceive() method .
 The broadcast receiver registered either within code or within a manifest file.
 The receiver must listen for certain broadcast intents, which are indicated by intent filters.
 When a matching broadcast is detected, the onReceive() receiver is called.
 A broadcast receiver does not need to be running all the time.
 Android launches the broadcast receiver automatically after detecting a matching intent

before invoking the onReceive() function.
Note:
Since from API Level 26, the broadcast can only be caught by the dynamic receiver

18

Intent Type Description

android.action.BATTERY_LOW
Indicates low battery condition on the
device.

android.intent.action.BOOT_COMPLETED
This is broadcast once after the system has
finished booting

android.intent.action.CALL
To perform a call to someone specified by
the data

android.intent.action.DATE_CHANGED Indicates that the date has changed

android.intent.action.REBOOT Indicates that the device has been a reboot

android.net.conn.CONNECTIVITY_CHANGE
The mobile network or wifi connection is
changed(or reset)

android.intent.ACTION_AIRPLANE_MODE_C
HANGED

This indicates that airplane mode has been
switched on or off.

Important System-wide Generated Intents

It is registered in a manifest file within a <receiver> tag added for the receiver.
Example (manifest file):
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.broadcastdetector.broadcastdetector" >
<uses-sdk android:minSdkVersion="17" />
<application
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name" >

<receiver
android:name="MyReceiver" >
</receiver>

</application>
</manifest>

a. Registering a Broadcast Receiver

b. Unregistered a Broadcast Receiver

When a broadcast receiver is no longer required, it is unregistered via a call to the
unregisterReceiver() by passing a reference to the receiver object as an argument.

Example :

unregisterReceiver(receiver);

19

Obtaining Results from a Broadcast

sendOrderedBroadcast() :
When a broadcast intent is sent using the sendBroadcast() method, return results are
accessed through this method.
When a broadcast intent is sent using this method, it is delivered in sequential order to
each broadcast receiver with a registered interest.
It is called with a number of arguments to be notified when all other broadcast receivers
have handled the intent.

 A normal broadcast reaches the receiver then terminates.
A sticky broadcast remains sticks around so that it can notify other apps if they need the
same information
Example:
Consider that the battery is fully charged.
When you register a new app that needs to know the information, or when an inactive
app is launched, the sticky broadcast will be sent to the new app's receiver.
A new sticky broadcast with updated information on the same topic will rewrite an earlier
sticky broadcast.

Sticky Broadcast Intents

Example: Broadcast Intent

Creating the broadcast Receiver and how to register them for a particular event and how to
use them in the application.
Step 1: Create a New Project
Step 2: Working with the activity_main.xml file

Go to the activity_main.xml file and refer to the following code

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

</androidx.constraintlayout.widget.ConstraintLayout>

20

Step 3: Working with the MainActivity file
Go to the MainActivity file and refer to the following code.

import android.app.Activity;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
public class MainActivity extends AppCompatActivity {

AirplaneModeChangeReceiver airplaneModeChangeReceiver = new
AirplaneModeChangeReceiver();

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main); }

@Override
protected void onStart() {

super.onStart();
IntentFilter filter = new

IntentFilter(Intent.ACTION_AIRPLANE_MODE_CHANGED);
registerReceiver(airplaneModeChangeReceiver, filter); }

@Override
protected void onStop() {

super.onStop();
unregisterReceiver(airplaneModeChangeReceiver);

} }

Step 4: Create a new class:
Go to app > java > your package name(in which the MainActicity is present) > right-click > New >
Java File/Class and name the files as AirplaneModeChangeReceiver.
Below is the code for the AirplaneModeChangeReceiver file.
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.provider.Settings;
import android.widget.Toast;
public class AirplaneModeChangeReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

if (isAirplaneModeOn(context.getApplicationContext())) {
Toast.makeText(context, "AirPlane mode is on", Toast.LENGTH_SHORT).show();
}
else
{
Toast.makeText(context, "AirPlane mode is off", Toast.LENGTH_SHORT).show();
}

}
private static boolean isAirplaneModeOn(Context context) {

return Settings.System.getInt(context.getContentResolver(),
Settings.Global.AIRPLANE_MODE_ON, 0) != 0;

} }

21

AndroidManifest.xml file

Required XML file for all the android application and located inside the Root directory.

1. It contains information of the package, including components of the application such as

1. Activities
2. Services
3. Broadcast Receivers
4. Content Providers etc.

It is responsible to Protect the Application by providing the permissions.

It also declares the Android API that the application is going to use.

It lists the Instrumentation Classes which provides Profiling and other information

Instrumentation Class is Removed just before the application is published etc.

Elements of the AndroidManifest.xml file

1. <manifest>
manifest is the root element of the AndroidManifest.xml file. It has package attribute that
describes the package name of the activity class.
2. <application>
It includes the namespace declaration which contains several sub elements that declares the
application component such as activity etc.
The commonly used attributes are

android:icon represents the icon for all the components.
android:label works as the default label for all the components.
android:theme represents a common theme for all the android activities.

3. <activity>
It represents an activity attributes such as label, name, theme, launchMode etc.

android:label represents a label i.e. displayed on the screen.
android:name represents a name for the activity class. It is required attribute.

4.<intent-filter>
Describes the type of intent to which activity, service or broadcast receiver can respond to.
5. <action>
It adds an action for the intent-filter. The intent-filter must have at least one action element.
6. <category>
It adds a category name to an intent-filter.

22

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.javatpoint.hello"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="8"
android:targetSdkVersion="15" />

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"
android:label="@string/title_activity_main" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

A simple AndroidManifest.xml file

Intent
The intent is a messaging object which tells what kind of action to be performed.
Launching of the Activity.
Delivering a Broadcast
Starting a Service
Communication between the Components.

Intent Types

i. Explicit Intent
Does the specific application action which is set by the
User knows about all the things like after clicking a button which activity will start
Explicit intents are used for communication inside the application
ii. Implicit Intent
Implicit intents do not name a specific component
Declare general action to perform, which allows a component from another app to handle.

Example:
when you tap the share button in any app you can see the Gmail, Bluetooth, and other
sharing app options.

Intent Filters

23

Specifies the types of intents that an activity, service, or broadcast receiver can respond.
intent filter is used by implicit intent to serve the user request.
Intent filters are declared in the Android manifest file.
Intent filter must contain <action> tag

Example:
<activity android:name=".MainActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
<data android:mimeType="text/plain"/>

</intent-filter>
</activity>

Intent filter are describe by its
1. <action>
2. <category>
3. <data>

Intent Filter

Syntax:

<action android:name="string" />

Adds an action to an intent filter.
An <intent-filter> element must contain one or more <action> elements.
If there are no <action> elements in an intent filter, the filter doesn’t accept
any Intent objects.

Examples:

 ACTION_VIEW: An Activity can show to the users like showing an image
in a gallery app (or) an address to view in a map app

 ACTION_SEND: You should use this in intent with startActivity() when you
have some data that the user can share through another app, such as an email
app or social sharing app.

1.<action>

24

2. <category>

Syntax:
<category android:name="string" />
Adds a category name to an intent filter.
A string containing additional information about the kind of component that should
handle the intent.
Example:
CATEGORY_BROWSABLE: The target activity allows itself to be started by a
web browser to display data referenced by a link.

3. <data>

Syntax:
<data android:scheme="string"

android:host="string"
android:port="string"
android:path="string"
android:pathPattern="string"
android:pathPrefix="string"
android:mimeType="string" />

Adds a data specification to an intent filter.
The specification can be a data type, a URI, or both a data type and a URI.

Intent email = new Intent(Intent.ACTION_SEND, Uri.parse("mailto:"));
email.putExtra(Intent.EXTRA_EMAIL, recipients);
email.putExtra(Intent.EXTRA_SUBJECT, subject.getText().toString());
email.putExtra(Intent.EXTRA_TEXT, body.getText().toString());
startActivity(Intent.createChooser(email, "Choose an email client from..."));

Call startActivity method to start an email activity and is shown below

25

Multiple Intent Filters in Manifest File

<activity android:name=".MainActivity">
<!-- This activity is the main entry, should appear in app launcher -->
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
<data android:mimeType="text/plain"/>

</intent-filter>
</activity>
<activity android:name=".ResultActivity">

<!-- This activity handles "SEND" actions with text data -->
<intent-filter>

<action android:name="android.intent.action.SEND"/>
<category android:name="android.intent.category.DEFAULT"/>
<data android:mimeType="text/plain"/>

</intent-filter>
</activity>

The activity “MainActivity” will act as an entry point for our app and
The second activity “ResultActivity” is intended to help us to share the text.

Permissions on Android

App permissions help support user privacy by protecting access to the following
1. Restricted Data: System State and Users' Contact Information
2. Restricted Actions: Connecting to a Paired Device and Recording Audio

High-level Workflow for using Permissions

If an app require access to restricted data or restricted actions, determine whether you can
get the information or perform the actions without needing to declare permissions.

Use Cases to be fulfill in the App without Declaring any permissions :
Taking Photos
Pausing Media Playback
Displaying Relevant Ads.

If an app must access restricted data or perform restricted actions to fulfill a use case,
declare the appropriate permissions.

Install-time Permissions: Automatically granted when your app is installed
 Runtime Permissions: Requires app to request the permission at runtime.

26

Figure: Illustrates The Workflow for Using App Permissions

Types of Permissions

In android permissions are categorizes into 3 types
1. Install-time Permissions
2. Runtime Permissions
3. Special Permissions
Each permission's indicates the scope of restricted data that an app can access.
The scope of restricted actions can perform when the System Grants the Permission.
The Protection Level for each permission is based on its type.

1. Install-time Permissions

Install-time permissions provides Limited Access to restricted data.
When install-time permissions declared, an app store Displays Notice to the user.
Note: If the Android 5.1.1 (API 22) or less, the permission is requested at the installation
time at the Google Play Store.

27

1. Normal Permissions

Allow access to data and actions that extend beyond your app's sandbox.

Note:
 Risk to the User's Privacy and the operation of other apps.
 The system assigns the Normal Protection Level to these permissions.

2. Signature Permissions

The system grants a signature permission to an app only when the app is signed by the
Same Certificate as the app that defines the permission.

Example:
Autofill or VPN Services

Note:
These apps require Service-binding signature permissions so that only the system can
bind to the services.
The system assigns the Signature Protection Level to signature permissions.

Types of Install-time Permissions

2. Runtime Permissions

Runtime permissions (Dangerous Permissions) give additional access to restricted data or
perform restricted actions which affect the system and other apps.
Before accessing the restricted data or perform restricted actions user need to request

runtime permissions in the app.
Check the permissions before each access.
When an app requests a permission, the system displays a runtime permission prompt.
Many runtime permissions access Private User Data
The microphone and camera provide access to sensitive information.
Example:
Location and Contact Information.
Note:
1. The system assigns the Dangerous Protection Level to runtime permissions.
2. If the Android 6 (API 23) or higher, the permission is requested at the run time during

the running of the app.

28

3. Special Permissions

Special permissions correspond to Particular App Operations.

Only the platform and OEMs can define special permissions.

The Platform and OEMs define special permissions when they want to protect

access to particularly powerful actions (drawing over other apps).

The Special App Access in system settings contains a set of user-toggleable

operations.

Many of these operations are implemented as special permissions.

Each special permission has its own implementation details.

Note:

The system assigns the Appop Protection Level to special permissions.

Steps for Requesting Permissions at Run Time

Step 1:
Declare the Permission in the Android Manifest File in the AndroidManifest.xml file using
the <Uses-permission> Tag.
<uses-permission android:name=”android.permission.PERMISSION_NAME”/>
Step 2:
Modify activity_main.xml file to Add Two Buttons to request permission on button click.
Step 3:
Check whether permission is already granted or not. If permission isn’t already granted,
request the user for the permission.
Step 4:
Override onRequestPermissionsResult() method.

A. Check for Permissions
Beginning with Android 6.0 (API level 23), the user has the right to revoke permissions from
any app at any time, even if the app targets a lower API level.
So to use the service, the app needs to check for permissions every time.
B. Request Permissions
When PERMISSION_DENIED is returned from the checkSelfPermission() method

29

Android Resource Types

1. Drawable Resources
2. Color State List Resources
3. Animation Resources
4. Layout Resources
5. Menu Resources
6. Style Resource
7. String Resources
8. Others

1. Drawable Resources
These resources define the Graphics of application with xml or bitmaps.
They are accessed from R.drawable class and saved in res/drawable/ folder.

Different types of drawables are as follows:
i. Nine-Patch File
 This is a PNG file which has stretchable regions.
 With this image can be resized according to content.
ii. Layer List
 This is a drawable which manages an array of other Drawables
 They are drawn in array order.
 Element with largest index will be at top.
iii. Level List
 This is an XML file.
 It defines one drawable which manages number of alternate drawables.
 These alternatives are assigned with a maximum number.
iv. Bitmap File

This is a simple bitmap graphic file.
v. Clip Drawable: This XML file defines a drawable that clips another drawable.
vi. Shape Drawable: This XML file defines geometric shape.
vii. Transition Drawable:
 This Xml file deals with the transition.
 It cross-fades between two drawable resources.

30

2.Color State List Resources
i. A ColorStateList is an object which can be defined in XML.
ii. This can be applied as a color.
iii. Depending on the state of view object to which it is applied the color actually changes.
iv. Each color can be defined in a XML file under <item /> tag.
v. So the state list in an XML file can be described.
vi. When state changes, state list is traversed from top to bottom and the most suitable

match is picked.

3.Animation Resource
There are two types of animations which an animation resource can refer to and they are:
1. Property Animation:
An animator is used to set an object’s property over a period of time.
In short we modify the properties of object.
2. View Animation:
There are two types of animations which can be viewed:
i. Frame animation:
 A sequence of images is displayed in order.
ii. Tween animation:
An animation is created by performing a series of transformations on a single image.

4. Layout Resource
A layout resource defines the architecture for the UI in an Activity or a component of a UI.
5.Menu
Android Menu resource is used to design and define the menu of application.
i. Options Menu
ii. Context Menu
iii. Submenu.
This can be inflated by MenuInflater.
A MenuInflater is an object that is able to create Menu from xml resources
6. String Resource
Android String resource provides text strings for application.
We have an option to format text and style it as well.
We have three types of resources:
i. String Array: It is an xml resource which provides an array of strings
ii. String: This is an xml resource which provides a single string
iii. Quantity Strings: It is an xml resource. It carries the strings for pluralization.
7. Style Resources
Style resource is used to define the format and look of user interface.
An individual view can have a specific style.
An entire activity or an application can be stylized by manifest file.
It is nothing but a resource which has to be referenced properly.

31

8. Other Resources
i. Color:
It is an xml resource which has a hexadecimal number.
This number corresponds to a particular color.
ii. Bool:
This resource carries a color value.
iii. Dimension:
It contains the value of dimension with the specific unit of measure.
iv. ID:
This is also an xml resource.
This is an unique identifier which identifies application resources and components.
v. Integer:
It is an xml resource which carries an integer value.
vi. Typed Array:
We can use this as array of drawables.
vii. Integer Array:
It is an xml resource and it is an array of integers.

